J. Mater. Sci. Technol. ›› 2020, Vol. 40: 135-145.DOI: 10.1016/j.jmst.2019.08.048
Previous Articles Next Articles
Iftikhar Ahmada*(), Mohammad Islama, Nuha Al Habisa, Shahid Parvezb
Received:
2019-06-13
Revised:
2019-07-31
Accepted:
2019-08-29
Published:
2020-03-01
Online:
2020-04-01
Contact:
Ahmad Iftikhar
Iftikhar Ahmad, Mohammad Islam, Nuha Al Habis, Shahid Parvez. Hot-pressed graphene nanoplatelets or/and zirconia reinforced hybrid alumina nanocomposites with improved toughness and mechanical characteristics[J]. J. Mater. Sci. Technol., 2020, 40: 135-145.
Sample ID | Chemical composition | Physical properties | |||||
---|---|---|---|---|---|---|---|
Al2O3 (wt%) | ZrO2 (wt%) | GNP (wt%) | Density (g cm-3) | Densification (%) | Grain size (μm) | ||
Alumina | Monolithic alumina | 100 | × | × | 3.98 ± 0.01 | 99.7 | 4.2 ± 0.15 |
A4Z | Nanocomposite | 96.0 | 4.0 | × | 4.05 ± 0.03 | 99.4 | 3.5 ± 0.10 |
A0.5G | Nanocomposite | 99.5 | × | 0.5 | 3.98 ± 0.02 | 99.2 | 3.1 ± 0.13 |
A4Z0.5G | Hybrid Nanocomposite | 95.5 | 4.0 | 0.5 | 3.99 ± 0.04 | 98.5 | 2.4 ± 0.12 |
Table 1 Chemical composition and hot-pressing protocol of all the samples.
Sample ID | Chemical composition | Physical properties | |||||
---|---|---|---|---|---|---|---|
Al2O3 (wt%) | ZrO2 (wt%) | GNP (wt%) | Density (g cm-3) | Densification (%) | Grain size (μm) | ||
Alumina | Monolithic alumina | 100 | × | × | 3.98 ± 0.01 | 99.7 | 4.2 ± 0.15 |
A4Z | Nanocomposite | 96.0 | 4.0 | × | 4.05 ± 0.03 | 99.4 | 3.5 ± 0.10 |
A0.5G | Nanocomposite | 99.5 | × | 0.5 | 3.98 ± 0.02 | 99.2 | 3.1 ± 0.13 |
A4Z0.5G | Hybrid Nanocomposite | 95.5 | 4.0 | 0.5 | 3.99 ± 0.04 | 98.5 | 2.4 ± 0.12 |
Fig. 1. (a) SEM image of 2D sheet morphology for the GNPs, (b) TEM snapshot of the characteristics crumpling and overlapped features for the GNP, (c) SEM image of the even distribution of alumna/zirconia nanoparticles on the GNP lateral surface and (d) TEM image of the sticking of alumina and zirconia nanoparticles on a GNP segment.
Fig. 2. SEM images of the hybrid nanocomposites surface showing even distributions of (a) GNPs (black arrows) as well as zirconia phase (marked by white circles) in alumina matrix and (b) elemental analysis of the hybrid nanocomposites.
Fig. 3. SEM analysis of the fractured surfaces of the (a) alumina-monolithic showing large grains with intergranular failure-mode, (b) A4Z nanocomposite manifesting intergranular failure mode-zirconia particles are marked by blue arrows, (c) A0.5G nanocomposite exhibiting intergranular failure-mode and GNPs are marked by green circles and (d) A4Z0.5G hybrid nanocomposite demonstrating fine-grained microstructure as well as intergranular failure-mode.
Fig. 4. XRD patterns of (a) monolithic alumina, alumina/zirconia nanocomposite and (b) alumina/GNP nanocomposite, alumina/zirconia/GNP hybrid nanocomposites prepared by hot-pressing.
ID | Hardness, HV (GPa) | Elastic modulus, E (GPA) | Fracture toughness, KIC (MPa m1/2) | Critical energy, GIC (J m-2) | Ballistic energy dissipation ability, D (10-12 s-1) |
---|---|---|---|---|---|
Alumina | 16.4 ± 0.2 | 395 ± 5 | 3.1 ± 0.15 | 91 ± 5 | 3.10 |
A4Z | 14.6 ± 0.3 | 363 ± 7 | 4.6 ± 0.13 | 143 ± 8 | 1.20 |
A0.5G | 17.5 ± 0.2 | 355 ± 8 | 5.9 ± 0.18 | 192 ± 6 | 0.88 |
A4Z0.5G | 19.3 ± 0.3 | 345 ± 7 | 7.9 ± 0.20 | 265 ± 4 | 0.51 |
Table 2 Mechanical and ballistic properties of all hot-pressed samples.
ID | Hardness, HV (GPa) | Elastic modulus, E (GPA) | Fracture toughness, KIC (MPa m1/2) | Critical energy, GIC (J m-2) | Ballistic energy dissipation ability, D (10-12 s-1) |
---|---|---|---|---|---|
Alumina | 16.4 ± 0.2 | 395 ± 5 | 3.1 ± 0.15 | 91 ± 5 | 3.10 |
A4Z | 14.6 ± 0.3 | 363 ± 7 | 4.6 ± 0.13 | 143 ± 8 | 1.20 |
A0.5G | 17.5 ± 0.2 | 355 ± 8 | 5.9 ± 0.18 | 192 ± 6 | 0.88 |
A4Z0.5G | 19.3 ± 0.3 | 345 ± 7 | 7.9 ± 0.20 | 265 ± 4 | 0.51 |
Fig. 5. (a) SEM image of a microhardness indent showing the crack lengths and zigzag failure patters, (b) the GNP crack-bridging toughening phenomenon, (c) low magnification SEM image of the A4Z fractured surface showing the grain boundary cracks (marked by blue arrows) and (d) the high-magnification SEM image showing well bonded matrix grains in the A4Z0.5G hybrid nanocomposite.
Fig. 6. SEM images of the direct physical GNP segments interactions with the matrix grains: (a) the GNP grains sharing and grains anchoring phenomenon; (b) GNP grain wrapping interaction; (c) sticking of a GNP with the alumina matrix.
Fig. 7. TEM investigation of the hybrid nanocomposite showing (a) the GNP surface locking with matrix grains, (b) high-resolution lattice resolved TEM image of the GNPL/alumina interfacial region, (c) the alumina matrix phase, (d) the GNP and (e) interfacial GNP/alumina connection at high-magnification.
|
[1] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[2] | Yabin Hao, Minghe Fang, Chuan Xu, Zhe Ying, Han Wang, Rui Zhang, Hui-Ming Cheng, You Zeng. A graphene-laminated electrode with high glucose oxidase loading for highly-sensitive glucose detection [J]. J. Mater. Sci. Technol., 2021, 66(0): 57-63. |
[3] | Yuwei Ye, Hao Chen, Yangjun Zou, Haichao Zhao. Study on self-healing and corrosion resistance behaviors of functionalized carbon dot-intercalated graphene-based waterborne epoxy coating [J]. J. Mater. Sci. Technol., 2021, 67(0): 226-236. |
[4] | Zuoting Yang, Ke Yang, Yuhong Cui, Tariq Shah, Mudasir Ahmad, Qiuyu Zhang, Baoliang Zhang. Synthesis of surface imprinted polymers based on wrinkled flower-like magnetic graphene microspheres with favorable recognition ability for BSA [J]. J. Mater. Sci. Technol., 2021, 74(0): 203-215. |
[5] | Qiuzhi Gao, Ziyun Liu, Huijun Li, Hailian Zhang, Chenchen Jiang, Aimin Hao, Fu Qu, Xiaoping Lin. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling [J]. J. Mater. Sci. Technol., 2021, 68(0): 91-102. |
[6] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[7] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
[8] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
[9] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[10] | Weiwei Xiao, Na Ni, Xiaohui Fan, Xiaofeng Zhao, Yingzheng Liu, Ping Xiao. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide [J]. J. Mater. Sci. Technol., 2021, 60(0): 70-76. |
[11] | Xin Wu, Fengwen Mu, Haiyan Zhao. Recent progress in the synthesis of graphene/CNT composites and the energy-related applications [J]. J. Mater. Sci. Technol., 2020, 55(0): 16-34. |
[12] | Yongjin Zou, Xi Zhang, Jing Liang, Cuili Xiang, Hailiang Chu, Huanzhi Zhang, Fen Xu, Lixian Sun. Encapsulation of hollow Cu2O nanocubes with Co3O4 on porous carbon for energy-storage devices [J]. J. Mater. Sci. Technol., 2020, 55(0): 182-189. |
[13] | Poulami Hota, Milon Miah, Saptasree Bose, Diptiman Dinda, Uttam K. Ghorai, Yan-Kuin Su, Shyamal K. Saha. Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application [J]. J. Mater. Sci. Technol., 2020, 40(0): 196-203. |
[14] | Geng He, Feifei Qin, Chunxiang Xu, Chinhua Wang, Yu Xu, Bing Cao, Ke Xu. Double-triangular whispering-gallery mode lasing from a hexagonal GaN microdisk grown on graphene [J]. J. Mater. Sci. Technol., 2020, 53(0): 140-145. |
[15] | Xueying Yang, Cuili Xiang, Yongjin Zou, Jing Liang, Huanzhi Zhang, Erhu Yan, Fen Xu, Xuebu Hu, Qiong Cheng, Lixian Sun. Low-temperature synthesis of sea urchin-like Co-Ni oxide on graphene oxide for supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2020, 55(0): 223-230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||