J. Mater. Sci. Technol. ›› 2021, Vol. 63: 192-202.DOI: 10.1016/j.jmst.2020.02.033
• Research Article • Previous Articles Next Articles
Hanxun Wanga, Baichun Hua, Zisen Gaoa, Fengjiao Zhangb,*(), Jian Wanga,*()
Received:
2019-11-30
Revised:
2020-01-14
Accepted:
2020-02-11
Published:
2021-02-10
Online:
2021-02-15
Contact:
Fengjiao Zhang,Jian Wang
About author:
jianwang@syphu.edu.cn (J. Wang).Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling[J]. J. Mater. Sci. Technol., 2021, 63: 192-202.
Name | logP | Solvent accessible surface (?2) | Polar surface area (?2) | GlideScore (kcal/mol) |
---|---|---|---|---|
Carbaryl | 2.496 | 407.88 | 38.33 | -21.463 |
Catechol | 0.987 | 256.64 | 40.46 | -13.511 |
Fluridone | 3.416 | 513.51 | 17.07 | -29.230 |
Table 1 Computational properties of pesticides.
Name | logP | Solvent accessible surface (?2) | Polar surface area (?2) | GlideScore (kcal/mol) |
---|---|---|---|---|
Carbaryl | 2.496 | 407.88 | 38.33 | -21.463 |
Catechol | 0.987 | 256.64 | 40.46 | -13.511 |
Fluridone | 3.416 | 513.51 | 17.07 | -29.230 |
Fig. 1. Structures, binding energies and lipophilic surfaces of carbaryl, catechol and fluridone. The surfaces are shown in solid styles. Warm colors indicate lipophilic features, whereas cold colors indicate hydrophilic features.
Pesticides | Total energy (kcal/mol) | Van der Waal (kcal/mol) | Electrostatic (kcal/mol) |
---|---|---|---|
Carbaryl | -19.36 | -17.56 | -1.80 |
Catechol | -17.11 | -10.05 | -7.06 |
Fluridone | -27.17 | -24.76 | -2.41 |
Table 2 Energy terms for pesticides interacting with graphene oxide.
Pesticides | Total energy (kcal/mol) | Van der Waal (kcal/mol) | Electrostatic (kcal/mol) |
---|---|---|---|
Carbaryl | -19.36 | -17.56 | -1.80 |
Catechol | -17.11 | -10.05 | -7.06 |
Fluridone | -27.17 | -24.76 | -2.41 |
Fig. 2. Solvent environment for molecular dynamic simulation of carbaryl (orange CPK), catechol (green CPK) and fluridone (blue CPK) with graphene oxide.
Fig. 3. Dynamics process of carbaryl (orange sticks), catechol (green sticks) or fluridone (blue sticks) interacting with graphene oxide (thin grey sticks) during the whole MD simulations.
Fig. 4. Conformational distribution of carbaryl (orange sticks), catechol (green sticks), or fluridone (blue sticks) surrounding graphene oxide extracted from MD frames. Graphene oxide backbones were shown as thin grey sticks.
Fig. 5. Binding patterns and MD properties of carbaryl (orange sticks), catechol (green sticks), or fluridone (blue sticks) with graphene oxide obtained from MD simulation. Dotted blue lines indicated ??-?? stacking contacts. MD properties were monitored during MD simulation, including Ligand RMSD, Radius of Gyration (rGyr), Molecular Surface Area (MolSA), Solvent Accessible Surface Area (SASA), and Polar Surface Area (PSA).
Fig. 6. Simulation event analysis for carbaryl. (A) The dihedral was defined according to the relative position of carbaryl (orange stick) and graphene oxide (grey stick). (B) Time evolution of planar angles in carbaryl-graphene oxide complex. (C) Frequency of planar angles of carbaryl conformations from MD trajectory. (D) Planar angle distribution of carbaryl conformations from MD trajectory in the polar scatter plot. The scatter points stood for conformations, and concentric circles represented the simulation time.
Fig. 7. Simulation event analysis for catechol. (A) The dihedral was defined according to the relative position of catechol (green stick) and graphene oxide (grey stick). (B) Time evolution of planar angles in catechol-graphene oxide complex. (C) Frequency of planar angles of catechol conformations from MD trajectory. (D) Planar angle distribution of catechol conformations from MD trajectory in the polar scatter plot. The scatter points stood for conformations, and concentric circles represented simulation time.
Fig. 8. Simulation event analysis for fluridone. (A) The three involving dihedrals were defined according to the relative position of fluridone (blue stick) and graphene oxide (grey stick). (B) Time evolution of benzene ring planar angles (the top panel), the frequency of planar angles of benzene ring in fluridone conformations (the bottom left panel), and the planar angle distribution of benzene ring in fluridone conformations in fluridone-graphene oxide complex (the bottom right panel). (C) Time evolution of N-methylpyridin-4(1H)one ring planar angles (the top panel), frequency of planar angles of N-methylpyridin-4(1H)one ring in fluridone conformations (the bottom left panel), and planar angle distribution of N-methylpyridin-4(1H)one ring in fluridone conformations in fluridone-graphene oxide complex (the bottom right panel). (D) Time evolution of trifluoromethylbenzene ring planar angles (the top panel), frequency of planar angles of trifluoromethylbenzene ring in fluridone conformations (the bottom left panel), and planar angle distribution of trifluoromethylbenzene ring in fluridone conformations in fluridone-graphene oxide complex (the bottom right panel).
Fig. 9. Graphics of the torsional conformation of each rotatable bond of carbaryl (A) and fluridone (B) on GO surface during MD simulations. The schematic 2D diagram of pesticides was shown with color-coded rotatable bonds. The dial plots of the angle of each bond after simulations were displayed on the left, and the bar charts of the torsional probability as a function of angle are shown on the right.
Contaminants | Total energy (kcal/mol) | Valence energy (kcal/mol) | Nonbond energy (kcal/mol) | Van der Waals (kcal/mol) | Electrostatic energy (kcal/mol) |
---|---|---|---|---|---|
Carbaryl | -25.1087 | 0 | -25.1087 | -17.3917 | -7.7170 |
Catechol | -15.5502 | 0 | -15.5502 | -11.4334 | -4.1168 |
Fluridone | -28.9206 | 0 | -28.9206 | -21.5853 | -7.3352 |
Table 3 Composition of binding energies between pesticides and graphene oxide.
Contaminants | Total energy (kcal/mol) | Valence energy (kcal/mol) | Nonbond energy (kcal/mol) | Van der Waals (kcal/mol) | Electrostatic energy (kcal/mol) |
---|---|---|---|---|---|
Carbaryl | -25.1087 | 0 | -25.1087 | -17.3917 | -7.7170 |
Catechol | -15.5502 | 0 | -15.5502 | -11.4334 | -4.1168 |
Fluridone | -28.9206 | 0 | -28.9206 | -21.5853 | -7.3352 |
Fig. 11. Plot of HOMO and LUMO orbitals as well as electrostatic potential (ESP) mapped on the surface of the molecular density for pesticides. (A-C) carbaryl-graphene oxide complex; (D-F) Catechol-graphene oxide complex; (G-I) Fluridone-graphene oxide complex. Increasing negative potentials were coded from blue color over green to red color. Calculations were carried out with Gaussian09 using 6-31G** basis set and M06-2X hybrid potential.
[1] |
M.W. Aktar, D. Sengupta, A. Chowdhury, Interdiscip. Toxicol. 2 (2009) 1-12.
DOI URL PMID |
[2] |
B.S. Choudri, Y. Charabi, Water Environ. Res. 91 (2019) 1342-1349.
DOI URL PMID |
[3] |
B.S. Choudri, Y. Charabi, M. Ahmed, Water Environ. Res. 90 (2018) 1663-1678.
DOI URL PMID |
[4] |
W.W. Gong, M.Y. Jiang, P. Han, G. Liang, T.T. Zhang, G.N. Liu, Environ. Pollut. 254 (2019), 112927.
DOI URL PMID |
[5] |
M. Bilal, H.M.N. Iqbal, D. Barcel??, Sci. Total Environ. 689 (2019) 160-177.
DOI URL PMID |
[6] |
M. Bilal, M. Adeel, T. Rasheed, Y. Zhao, H.M.N. Iqbal, Environ. Int. 124 (2019) 336-353.
DOI URL PMID |
[7] |
M. Bilal, T. Rasheed, F. Nabeel, H.M.N. Iqbal, Y. Zhao, J. Environ, Manage. 234 (2019) 253-264.
DOI URL |
[8] |
J.A. Leiva, P.C. Wilson, J.P. Albano, P. Nkedi-Kaza, G.A. O’Connor, ACS Omega 4 (2019) 17782-17790.
DOI URL PMID |
[9] |
A. Gulkowska, I.J. Buerge, T. Poiger, R. Kasteel, Pest Manage. Sci. 72 (2016) 2218-2230.
DOI URL |
[10] |
F. Abdollah, S.M. Borghei, E. Moniri, S. Kimiagar, H.A. Panahi, Water Sci. Technol. 80 (2019) 864-873.
DOI URL PMID |
[11] |
G.H. Gao, Y.Y. Xing, T.T. Liu, J. Wang, X.H. Hou, Microchem. J. 146 (2019) 126-133.
DOI URL |
[12] |
Y.D. Wang, M.T. Jia, X. Wu, T. Wang, J. Wang, X.H. Hou, Microchem. J. 146 (2019) 214-219.
DOI URL |
[13] |
Z.K. Wang, J.Y. Zhang, B.C. Hu, J. Yu, J. Wang, X.J. Guo, J. Taiwan Inst, Chem. Eng. 95 (2019) 635-642.
DOI URL |
[14] |
Q. Wang, W. Ma, Q. Tong, G. Du, J. Wang, M. Zhang, H. Jiang, H. Yang, Y. Liu, M. Cheng, Sci. Rep. 7 (2017) 7209.
DOI URL PMID |
[15] |
W.X. Ma, Q.L. Tong, J. Wang, H.L. Yang, M. Zhang, H.L. Jiang, Q.H. Wang, Y.X. Liu, M.S. Cheng, RSC Adv. 7 (2017) 6720-6723.
DOI URL |
[16] |
Y. Tong, L. Shao, X. Li, J. Lu, H. Sun, S. Xiang, Z. Zhang, Y. Wu, X. Wu, J. Agric, Food Chem. 66 (2018) 2616-2622.
DOI URL |
[17] | H.R. Nodeh, M.A. Kamboh, W.A.W. Ibrahim, B.H. Jume, H. Sereshti, M. M. Sanagi, Environ. Sci.: Processes Impacts 21 (2019) 714-726. |
[18] |
A. Markus, A.O. Gbadamosi, A.S. Yusuff, A. Agi, J. Oseh, Environ. Sci. Pollut. R 25 (2018) 35130-35142.
DOI URL |
[19] |
P. Klongklaew, T. Naksena, P. Kanatharana, O. Bunkoed, Anal. Bioanal. Chem. 410 (2018) 7185-7193.
DOI URL PMID |
[20] |
X. Hou, S. Tang, X. Guo, L. Wang, X. Liu, X. Lu, Y. Guo, J. Chromatogr, A 1571 (2018) 65-75.
DOI URL |
[21] |
P. Wang, M. Luo, D.H. Liu, J. Zhan, X.K. Liu, F. Wang, Z.Q. Zhou, P. Wang, J. Chromatogr. A 1535 (2018) 9-16.
DOI URL PMID |
[22] |
G. Liu, L. Li, D. Xu, X. Huang, X. Xu, S. Zheng, Y. Zhang, H. Lin, Carbohydr. Polym. 175 (2017) 584-591.
URL PMID |
[23] |
K. Shrivas, A. Ghosale, N. Nirmalkar, A. Srivastava, S.K. Singh, S.S. Shinde, Environ. Sci. Pollut. R 24 (2017) 24980-24988.
DOI URL |
[24] |
P.E. Czabotar, G. Lessene, A. Strasser, J.M. Adams, Nat. Rev. Mol. Cell Biol. 15 (2014) 49-63.
DOI URL PMID |
[25] |
J. Gasteiger, M. Marsili, Tetrahedr. Lett. 19 (1978) 3181-3184.
DOI URL |
[26] |
G. Robert, C. Gastaldi, A. Puissant, A. Hamouda, A. Jacquel, M. Dufies, N. Belhacene, P. Colosetti, J.C. Reed, P. Auberger, F. Luciano, Autophagy 8 (2012) 637-649.
DOI URL |
[27] |
R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, J.K. Perry, D.E. Shaw, P. Francis, P.S. Shenkin, J. Med. Chem. 47 (2004) 1739-1749.
DOI URL PMID |
[28] |
T.A. Halgren, R.B. Murphy, R.A. Friesner, H.S. Beard, L.L. Frye, W.T. Pollard, J.L. Banks, J. Med. Chem. 47 (2004) 1750-1759.
DOI URL PMID |
[29] | J.E. Jones, Proc. R. Soc. London, Ser. A 106 (1924) 463-477. |
[30] | K.J. Bowers, E. Chow, H. Xu, R.O. Dror, M.P. Eastwood, B.A. Gregersen, J.L. Klepeis, I. Kolossvary, M.A. Moraes, F.D. Sacerdoti, Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters, Conference on High Performance Computing (Supercomputing) (2006) 84. |
[31] | H. Sun, Z. Jin, C. Yang, R.L. Akkermans, S.H. Robertson, N.A. Spenley, S. Miller, S.M. Todd, J. Mol, Model. 22 (2016) 47. |
[32] |
Z.K. Wang, Z.S. Gao, S.S. Feng, J. Wang, X.J. Guo, Ind. Eng. Chem. Res. 58 (2019) 8072-8079.
DOI URL |
[33] |
Y. Shudo, M.R. Karim, R. Ohtani, M. Nakamura, S. Hayami, ChemElectroChem 5 (2018) 238-241.
DOI URL |
[34] |
H. Yan, H. Wu, K. Li, Y. Wang, X. Tao, H. Yang, A. Li, R. Cheng, ACS Appl. Mater. Interf. 7 (2015) 6690-6697.
DOI URL |
[35] |
S. Gadipelli, Z.X. Guo, Prog. Mater. Sci. 69 (2015) 1-60.
DOI URL |
[1] | Hairui Xing, Ping Hu, Shilei Li, Yegai Zuo, Jiayu Han, Xingjiang Hua, Kuaishe Wang, Fan Yang, Pengfa Feng, Tian Chang. Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: A review [J]. J. Mater. Sci. Technol., 2021, 62(0): 180-194. |
[2] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[3] | Nana Zhao, Fengchu Zhang, Fei Zhan, Ding Yi, Yijun Yang, Weibin Cui, Xi Wang. Fe 3+-stabilized Ti3C2Tx MXene enables ultrastable Li-ion storage at low temperature [J]. J. Mater. Sci. Technol., 2021, 67(0): 156-164. |
[4] | Liuyang Cao, Xue Cheng, Hongjie Xu, Guoqin Cao, Junhua Hu, Guosheng Shao. Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode [J]. J. Mater. Sci. Technol., 2021, 76(0): 156-165. |
[5] | Tiantian Wang, Jun Mei, Jianjun Liu, Ting Liao. Maximizing ionic transport of Li1+xAlxTi2-xP3O12 electrolytes for all-solid-state lithium-ion storage: A theoretical study [J]. J. Mater. Sci. Technol., 2021, 73(0): 45-51. |
[6] | Wenshuo Liang, Guimin Lu, Jianguo Yu. Theoretical prediction on the local structure and transport properties of molten alkali chlorides by deep potentials [J]. J. Mater. Sci. Technol., 2021, 75(0): 78-85. |
[7] | Weiwei Xiao, Na Ni, Xiaohui Fan, Xiaofeng Zhao, Yingzheng Liu, Ping Xiao. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide [J]. J. Mater. Sci. Technol., 2021, 60(0): 70-76. |
[8] | Bin Zhang, Yuping Duan, Haifeng Zhang, Shuo Huang, Guojia Ma, Tongmin Wang, Xinglong Dong, . Magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism in FeCoNiZMnx (Z = Si, Al, Sn, Ge) high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 124-131. |
[9] | Jun Jiang, Pengwan Chen, Weifu Sun. Monitoring micro-structural evolution during aluminum sintering and understanding the sintering mechanism of aluminum nanoparticles: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2020, 57(0): 92-100. |
[10] | Myung-Sic Chae, Tae Ho Lee, Kyung Rock Son, Tae Hoon Park, Kyo Seon Hwang, Tae Geun Kim. Electrochemically metal-doped reduced graphene oxide films: Properties and applications [J]. J. Mater. Sci. Technol., 2020, 40(0): 72-80. |
[11] | Jiahao Cheng, Xiaohua Hu, Xin Sun, Anupam Vivek, Glenn Daehn, David Cullen. Multi-scale characterization and simulation of impact welding between immiscible Mg/steel alloys [J]. J. Mater. Sci. Technol., 2020, 59(0): 149-163. |
[12] | Poulami Hota, Milon Miah, Saptasree Bose, Diptiman Dinda, Uttam K. Ghorai, Yan-Kuin Su, Shyamal K. Saha. Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application [J]. J. Mater. Sci. Technol., 2020, 40(0): 196-203. |
[13] | Yuchen Liu, Yu Zhou, Dechang Jia, Juanli Zhao, Banghui Wang, Yuanyuan Cui, Qian Li, Bin Liu. Composition dependent intrinsic defect structures in ASnO3 (A = Ca, Sr, Ba) [J]. J. Mater. Sci. Technol., 2020, 42(0): 212-219. |
[14] | Hao Yu, Yi He, Guoqing Xiao, Yi Fan, Jing Ma, Yixuan Gao, Ruitong Hou, Jingyu Chen. Weak-reduction graphene oxide membrane for improving water purification performance [J]. J. Mater. Sci. Technol., 2020, 39(0): 106-112. |
[15] | Xiaohui Zhang, Yi Zhang, Baohong Tian, Yanlin Jia, Ming Fu, Yong Liu, Kexing Song, Alex.A. Volinsky, Xiao Yang, Hang Sun. Graphene oxide effects on the properties of Al2O3-Cu/35W5Cr composite [J]. J. Mater. Sci. Technol., 2020, 37(0): 185-199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||