J. Mater. Sci. Technol. ›› 2021, Vol. 68: 124-131.DOI: 10.1016/j.jmst.2020.06.040
• Research Article • Previous Articles Next Articles
Bin Zhanga, Yuping Duana,*(), Haifeng Zhangb, Shuo Huangc, Guojia Mad, Tongmin Wanga,*(
), Xinglong Donge, b
Received:
2020-02-09
Revised:
2020-06-08
Accepted:
2020-06-09
Published:
2021-03-30
Online:
2021-05-01
Contact:
Yuping Duan,Tongmin Wang
About author:
tmwang@dlut.edu.cn(T. Wang).Bin Zhang, Yuping Duan, Haifeng Zhang, Shuo Huang, Guojia Ma, Tongmin Wang, Xinglong Dong, . Magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism in FeCoNiZMnx (Z = Si, Al, Sn, Ge) high entropy alloys[J]. J. Mater. Sci. Technol., 2021, 68: 124-131.
Sample | Mn content (x) | LC (exp.) | Ratio (%) | LC (cal.) | Ratio (%) |
---|---|---|---|---|---|
FeCoNiSi0.4Mnx (FCC) | 0 | 3.559 | - | 3.551 | 0.22 |
0.4 | 3.567 | 0.22 | 3.555 | 0.34 | |
0.8 | 3.574 | 0.42 | 3.545 | 0.81 | |
FeCoNiAl0.4Mnx (FCC) | 0 | 3.579 | - | 3.590 | -0.31 |
0.4 | 3.590 | 0.31 | 3.575 | 0.42 | |
0.8 | 3.596 | 0.47 | 3.561 | 0.97 | |
FeCoNiSi0.4Al0.4Mnx (BCC) | 0 | 2.841 | - | 2.843 | -0.07 |
0.2 | 2.844 | 0.11 | 2.847 | -0.11 | |
0.4 | 2.863 | 0.77 | 2.851 | 0.42 | |
0.6 | 2.866 | 0.88 | 2.854 | 0.42 | |
0.8 | 2.870 | 1.02 | 2.857 | 0.45 |
Table 1 The experimental and calculated LCs for FeCoNiSi0.4Mnx, FeCoNiAl0.4Mnx, and FeCoNiSi0.4Al0.4Mnx HEAs with different Mn contents.
Sample | Mn content (x) | LC (exp.) | Ratio (%) | LC (cal.) | Ratio (%) |
---|---|---|---|---|---|
FeCoNiSi0.4Mnx (FCC) | 0 | 3.559 | - | 3.551 | 0.22 |
0.4 | 3.567 | 0.22 | 3.555 | 0.34 | |
0.8 | 3.574 | 0.42 | 3.545 | 0.81 | |
FeCoNiAl0.4Mnx (FCC) | 0 | 3.579 | - | 3.590 | -0.31 |
0.4 | 3.590 | 0.31 | 3.575 | 0.42 | |
0.8 | 3.596 | 0.47 | 3.561 | 0.97 | |
FeCoNiSi0.4Al0.4Mnx (BCC) | 0 | 2.841 | - | 2.843 | -0.07 |
0.2 | 2.844 | 0.11 | 2.847 | -0.11 | |
0.4 | 2.863 | 0.77 | 2.851 | 0.42 | |
0.6 | 2.866 | 0.88 | 2.854 | 0.42 | |
0.8 | 2.870 | 1.02 | 2.857 | 0.45 |
Fig. 2. Curves of Ms with changing Mn contents for (a) FeCoNiSi0.4Mnx, (b) FeCoNiAl0.4Mnx, (c) FeCoNiSi0.4Al0.4Mnx, (d) FeCoNiAl0.4Sn0.4Mnx, (e) FeCoNiSi0.4Al0.4Sn0.4Mnx, and (f) FeCoNiSi0.4Al0.4Ge0.4Sn0.4Mnx HEAs. The three color charts indicate the corresponding increment of Ms with adding different Mn content into the original HEAs: aqua, $\Delta M_{s}$ (1) = Ms (x = 0.4) - Ms (x = 0); olive, $\Delta M_{s}$ (2) = Ms (x = 0.8) - Ms (x = 0.4); violet, $\Delta M_{s}$ (3) = Ms (x = 0.8) - Ms (x = 0).
Fig. 3. (a, d) Over-focused LTEM images for FeCoNiSi0.4Al0.4 and FeCoNiSi0.4Al0.4Mn0.4 HEAs with the corresponding SAED in the inset; (b, c) the in-plane magnetization distribution map for FeCoNiSi0.4Al0.4 HEA; (e) the enlarged picture for the olive green box in (d) with the corresponding under-focused magnetic domains images in the inset; (f) the magnetization distribution map for FeCoNiSi0.4Al0.4Mn0.4 HEA. (c, f) are the images for two samples after clockwise rotation of 45°. The green arrows represent the magnetization direction at each point.
Fig. 4. (a) Total DOS and (b) Mn d Partial DOS (PDOS) for FeCoNiSi0.4Mnx (top), FeCoNiAl0.4Mnx (middle), and FeCoNiSi0.4Al0.4Mnx (bottom) HEAs. The black, red, and blue curves represent the DOS of HEAs with the content of Mn of 0, 0.4, and 0.8.
Fig. 5. Magnetic moments of individual atoms and total magnetic moment in FeCoNiSi0.4Mnx (a-f), FeCoNiAl0.4Mnx (g-l), and FeCoNiSi0.4Al0.4Mnx (m-r) HEAs calculated from DFT at zero temperature. The magnetic moments of Si and Al are not presented here.
Fig. 6. Magnetic exchange interactions for FeCoNiSi0.4Mnx (a-c), FeCoNiAl0.4Mnx (d-f), and FeCoNiSi0.4Al0.4Mnx (g-i) HEAs as a function of the coordination shell, respectively. The enlarged pictures from the 2nd to 5th coordination shell are presented in Fig. S14.
[1] |
C. Liu, W.Y. Peng, C.S. Jiang, H.M. Guo, J. Tao, X.H. Deng, Z.X. Chen, J. Mater. Sci. Technol., 35 (2019), pp. 1175-1183.
DOI URL |
[2] |
K.N. Campo, C.C. Freitas, L. Fanton, R. Caram, J. Mater. Sci. Technol., 52 (2020), pp. 207-217.
DOI URL |
[3] |
T. Zhang, L.J. Xin, F.F. Wu, R.D. Zhao, J. Xiang, M.H. Chen, S.S. Jiang, Y.J. Huang, S.H. Chen, J. Mater. Sci. Technol., 35 (2019), pp. 2331-2335.
DOI PMID |
[4] |
M.G. Han, W. Guo, Y.H. Wu, Liu Min, L.H. Magundappa, Chin. Phys. B, 23 (2014), 083301.
DOI URL |
[5] |
X. Wang, J.Y. Li, N. Zhang, J.L. Xie, D.F. Liang, L.J. Deng, Mater. Des., 96 (2016), pp. 314-322.
DOI URL |
[6] | M.G. Han, D.F. Liang, J.L. Xie, L.J. Deng, J. Appl. Phys., 111 (2012), 07A317. |
[7] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, Adv. Eng. Mater., 6 (2004), pp. 299-303.
DOI URL |
[8] |
J.F. Li, S. Xiang, H.W. Luan, A. Amar, X. Liu, S.Y. Lu, Y.Y. Zeng, G.M. Le, X.Y. Wang, F.S. Qu, C.L. Jiang, G.N. Yang, J. Mater. Sci. Technol., 35 (2019), pp. 2430-2434.
DOI URL |
[9] |
C.D. Dai, T.L. Zhao, C.W. Dua, Z.Y. Liu, D.W. Zhang, J. Mater. Sci. Technol., 46 (2020), pp. 64-73.
DOI URL |
[10] |
C.D. Dai, T.L. Zhao, C.W. Du, Z.Y. Liu, D.W. Zhang, J. Mater. Sci. Technol., 46 (2020), pp. 64-73.
DOI URL |
[11] |
T.T. Zuo, R.B. Li, X.J. Ren, Y. Zhang, J. Magn. Magn. Mater., 371 (2014), pp. 60-68.
DOI URL |
[12] |
B. Zhang, Y.P. Duan, Y.L. Cui, G.J. Ma, T.M. Wang, X.L. Dong, Mater. Des., 149 (2018), pp. 173-183.
DOI URL |
[13] |
Y. Zhang, T.T. Zuo, Y.Q. Cheng, K.L. Peter, Sci. Rep., 3 (2013), p. 1455.
DOI URL |
[14] |
T.T. Zuo, X. Yang, P.K. Liaw, Y. Zhang, Intermetallics, 67 (2015), pp. 171-176.
DOI URL |
[15] |
B. Zhang, Y.P. Duan, Y.L. Cui, G.J. Ma, T.M. Wang, X.L. Dong, RSC Adv., 8 (2018), p. 14936.
DOI URL |
[16] |
B. Zhang, Y.P. Duan, X. Wen, G.J. Ma, T.M. Wang, X.L. Dong, H.F. Zhang, N. Jia, Y.S. Zeng, J. Alloys Compd., 790 (2019), pp. 179-188.
DOI URL |
[17] |
Y. Qawasmeh, B. Hamad, J. Appl. Phys., 111 (2012), 033905.
DOI URL |
[18] |
E. Simon, J. Gy. Vida, S. Khmelevskyi, L. Szunyogh, Phys. Rev. B, 92 (2015), 054438.
DOI URL |
[19] |
Q.L. Fang, J.M. Zhang, X.M. Zhao, K.W. Xu, V. Ji, J. Magn. Magn. Mater., 362 (2014), pp. 42-46.
DOI URL |
[20] |
S.J. Ahmed, C. Boyer, M. Niewczas, J. Alloys Compd., 781 (2019), pp. 216-225.
DOI URL |
[21] | M.S. Lucas, L. Mauger, J.A. Munoz, Y.M. Xiao, A.O. Sheets, S.L. Semiatin, J. Horwath, Z. Turgut, J. Appl. Phys., 109 (2011), 07E307. |
[22] |
T.T. Zuo, M.C. Gao, L.Z. Ouyang, X. Yang, Y.Q. Cheng, R. Feng, S.Y. Chen, P.K. Liaw, J.A. Hawk, Y. Zhang, Acta Mater., 130 (2017), pp. 10-18.
DOI URL |
[23] |
W. Kohn, L.J. Sham, Phys. Rev., 140 (1965), p. A1133.
DOI URL |
[24] |
P. Soven, Phys. Rev., 156 (1967), p. 809.
DOI URL |
[25] |
B.L. Gyorffy, Phys. Rev. B, 5 (1972), p. 2382.
DOI URL |
[26] |
A.I. Liechtenstein, M.I. Katsnelson, V.P. Antropov, V.A. Gubanov, J. Magn. Magn. Mater., 67 (1987), pp. 65-74.
DOI URL |
[27] |
P.A. Korzhavyi, A.V. Ruban, I.A. Abrikosov, H.L. Skriver, Phys. Rev. B, 51 (1995), pp. 5773-5780.
DOI URL |
[29] | X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura, Nature, 465 (2010), p. 09124. |
[30] |
A. Tonomura, X.Z. Yu, K. Yanagisawa, T. Matsuda, Y. Onose, N. Kanazawa, H.S. Park, Y. Tokura, Nano Lett., 12 (2012), pp. 1673-1677.
DOI URL |
[31] |
Q.Q. Ding, Y. Zhang, X. Chen, X.Q. Fu, D.K. Chen, S.J. Chen, L. Gu, F. Wei, H.B. Bei, Y.F. Gao, M.R. Wen, J.X. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Nature, 574 (2019), pp. 223-228.
DOI URL |
[32] |
S. Huang, W. Li, X.Q. Li, S. Schönecker, L. Bergqvist, E. Holmström, L.K. Varga, L. Vitos, Mater. Des., 103 (2016), pp. 71-74.
DOI URL |
[33] |
S. Huang, A. Vida, D. Molnar, K. Kadas, L.K. Varga, E. Holmstrom, L. Vitos, Appl. Phys. Lett., 107 (2015), 251906.
DOI URL |
[34] |
S. Huang, E. Holmströmb, O. Erikssonc, L. Vitos, Intermetallics, 95 (2018), pp. 80-84.
DOI URL |
[35] |
X. Zhang, P.S. Costa, J. Hooper, D.P. Miller, A.T. N’Diaye, S. Beniwal, X.Y. Jiang, Y.W. Yin, P. Rosa, L. Routaboul, M. Gonidec, L. Poggini, P. Braunstein, B. Doudin, X.S. Xu, A. Enders, E. Zurek, P.A. Dowben, Adv. Mater., 29 (2017), 1702257.
DOI URL |
[1] | Liuyang Cao, Xue Cheng, Hongjie Xu, Guoqin Cao, Junhua Hu, Guosheng Shao. Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode [J]. J. Mater. Sci. Technol., 2021, 76(0): 156-165. |
[2] | Feng He, Bin Han, Zhongsheng Yang, Da Chen, Guma Yeli, Yang Tong, Daixiu Wei, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai. Elemental partitioning as a route to design precipitation-hardened high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 72(0): 52-60. |
[3] | Xiaoming Sun, Lingzhong Du, Hao Lan, Jingyi Cui, Liang Wang, Runguang Li, Zhiang Liu, Junpeng Liu, Weigang Zhang. Mechanical, corrosion and magnetic behavior of a CoFeMn1.2NiGa0.8 high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 139-144. |
[4] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[5] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[6] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[7] | Hairui Xing, Ping Hu, Shilei Li, Yegai Zuo, Jiayu Han, Xingjiang Hua, Kuaishe Wang, Fan Yang, Pengfa Feng, Tian Chang. Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: A review [J]. J. Mater. Sci. Technol., 2021, 62(0): 180-194. |
[8] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[9] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
[10] | Tiantian Wang, Jun Mei, Jianjun Liu, Ting Liao. Maximizing ionic transport of Li1+xAlxTi2-xP3O12 electrolytes for all-solid-state lithium-ion storage: A theoretical study [J]. J. Mater. Sci. Technol., 2021, 73(0): 45-51. |
[11] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
[12] | Nana Zhao, Fengchu Zhang, Fei Zhan, Ding Yi, Yijun Yang, Weibin Cui, Xi Wang. Fe 3+-stabilized Ti3C2Tx MXene enables ultrastable Li-ion storage at low temperature [J]. J. Mater. Sci. Technol., 2021, 67(0): 156-164. |
[13] | Yuan Yu, Nannan Xu, Shengyu Zhu, Zhuhui Qiao, Jianbin Zhang, Jun Yang, Weimin Liu. A novel Cu-doped high entropy alloy with excellent comprehensive performances for marine application [J]. J. Mater. Sci. Technol., 2021, 69(0): 48-59. |
[14] | Peng Chen, Sheng Li, Yinghao Zhou, Ming Yan, Moataz M. Attallah. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying [J]. J. Mater. Sci. Technol., 2020, 43(0): 40-43. |
[15] | Kim Jeong Tae, Hong Sung Hwan, Park Jin Man, Jürgen Eckert, Kim Ki Buem. New para-magnetic (CoFeNi)50(CrMo)50-x(CB)x (x = 20, 25, 30) non-equiatomic high entropy metallic glasses with wide supercooled liquid region and excellent mechanical properties [J]. J. Mater. Sci. Technol., 2020, 43(0): 135-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||