J. Mater. Sci. Technol. ›› 2021, Vol. 63: 182-191.DOI: 10.1016/j.jmst.2020.02.086
• Research Article • Previous Articles Next Articles
Chang Liu, Jiachuan Hua, Pui Fai Ng, Bin Fei*()
Received:
2019-11-17
Revised:
2020-02-15
Accepted:
2020-02-23
Published:
2021-02-10
Online:
2021-02-15
Contact:
Bin Fei
About author:
*E-mail address: tcfeib@polyu.edu.hk (B. Fei).Chang Liu, Jiachuan Hua, Pui Fai Ng, Bin Fei. Photochemistry of bioinspired dityrosine crosslinking[J]. J. Mater. Sci. Technol., 2021, 63: 182-191.
Fig. 1. (a) The structure of Ru(II)bpy32+. (b) The proposed mechanism of Ru(II)bpy32+-mediated photo-crosslinking method. Reproduced with permission [26]. Copyright 1999, National Academy of Sciences, U.S.A..
Catalyst (concentration) | Oxidant (concentration) | Protein (concentration) | Photon | Light source | Distance and time | Result | References |
---|---|---|---|---|---|---|---|
Ru(bpy)3Cl2 (1 mM) | ammonium persulfate (10 mM) | peptide (0.2-2 mg/mL) | - | L1 | 6 min | the robust stability (under various pH and organic solvents) | [ |
[Ru(bpy)3]2+ (2 mM) | ammonium persulfate (10-20 mM) | rec1-resilin (200 mg/mL) | 300-1200 nm | L2 | 8-15 cm and10-60 s | the excellent resilience | [ |
Ru(bpy)3Cl2 (0.125 mM) | ammonium persulfate (2.5 mM) | protein (0.01-20 mM) | 380-2500 nm | L3 | 50 cm and 0.5 s | design and develop a type of protein cross-linking reaction | [ |
[Ru(bpy)3]2+ (400 μM) | ammonium persulfate (100-200 mM) | silk protein (50-200 mg/mL) | - | L4 | 3 cm and 10 min | high water content and compressive modulus ~349 ± 64 MPa at 15 % strain | [ |
[Ru(bpy)3]2+ (0.16-10 mM) | ammonium persulphate (20-100 mM) | silk fibroin (10-300 mg/mL) | - | L5 | 180 s | tunable mechanical properties and water uptake capacity | [ |
Ru(bpy)3Cl2 (2 mM) | sodium persulfate (10-50 mM) | rec-1 and An16 (10 mg/mL); collagen | 430-480 nm | L6 | 15-50 mm and 20 s | improve stabilization of tissues | [ |
Ru(bpy)3Cl2 (1 mM) | sodium persulfate (20-40 mM) | α-keratose (100 mM) | 300-1200 nm | L7 | 15 cm and 1 min | biocompatibility and moderate mechanical properties | [ |
[Ru(bpy)3]2+ (2 mM) | sodium persulfate (20 mM) | fibrinogen (100-150 mg/mL) | - | L8 | 15 cm and 20 s | high mechanical properties and no cytotoxicity | [ |
[Ru(bpy)3]2+ (1 mM) | sodium persulfate (20 mM) | gelatin (100-175 mg/mL) | 300-1200 nm | L9 | 150 mm and 30 s | highly elastic tissue sealant | [ |
RuBPY (5 mM) | ammonium persulphate (28 mM) | silk fibroin (200 mg/mL) | - | L10 | 150 s | Young’s modulus ~8 MPa and tensile toughness ~2.4 MJ/m3 | [ |
[Ru(bpy)3]2+ (5 × 10-6 M) | ammonium persulphate (1.25 × 10-4 M) | SP1S98Y (10 -5 M) | - | L11 | 20 cm | prominent structural stability | [ |
[Ru(bpy)3]2+ (5 mM) | ammonium persulphate (28 mM) | silk fibroin (150 mg/mL); rec1-resilin (20 mg/mL) | - | L12 | 150-180 s | strong mechanical properties | [ |
[Ru(bpy)3]2+ (1 mM) | sodium persulfate (50 mM) | silk fibroin | 450 nm | - | 60 s | remarkable mechanical properties and biocatalyst for CO2 | [ |
Ru(II)bpy32+ (2 mM) | sodium persulfate (10-30 mM) | recombinant mussel adhesive proteins | 460 nm | L13 | 20 mm and 60 s | strong wet tissue adhesion | [ |
Ru(bpy)3Cl2 (3.3 μL, 27.6 mM) | ammonium persulfate (15.6 μL, 178 mM) | FmocFFGGGY DMSO (15 μL, 100 mg/mL) | - | L14 | - | high mechanical properties | [ |
Ru(bpy)3Cl2 (8 μL, 18.9 mM) | ammonium persulfate (16 μL, 273.9 mM). | peptide (0.8 wt%) | - | L15 | - | elastomeric peptide hydrogel with controlled CO-release | [ |
Ru(II)bpy32+ (1 mM) | sodium persulfate (40 mM) | marine-derived aneroin protein (10-30 wt/vot) | 452 | L16 | - | biocompatible and 3D printable ink | [ |
Ru(bpy)3Cl2 (1.5 mg/mL) | sodium persulfate (2.4 mg/mL) | bovine fibrinogen (2 mg/mL) | 465 | L17 | 20 s | enhanced the fiber density and mechanical stiffness | [ |
Table 1 Regulating factors of photo-crosslinking in the ruthenium-mediated method.
Catalyst (concentration) | Oxidant (concentration) | Protein (concentration) | Photon | Light source | Distance and time | Result | References |
---|---|---|---|---|---|---|---|
Ru(bpy)3Cl2 (1 mM) | ammonium persulfate (10 mM) | peptide (0.2-2 mg/mL) | - | L1 | 6 min | the robust stability (under various pH and organic solvents) | [ |
[Ru(bpy)3]2+ (2 mM) | ammonium persulfate (10-20 mM) | rec1-resilin (200 mg/mL) | 300-1200 nm | L2 | 8-15 cm and10-60 s | the excellent resilience | [ |
Ru(bpy)3Cl2 (0.125 mM) | ammonium persulfate (2.5 mM) | protein (0.01-20 mM) | 380-2500 nm | L3 | 50 cm and 0.5 s | design and develop a type of protein cross-linking reaction | [ |
[Ru(bpy)3]2+ (400 μM) | ammonium persulfate (100-200 mM) | silk protein (50-200 mg/mL) | - | L4 | 3 cm and 10 min | high water content and compressive modulus ~349 ± 64 MPa at 15 % strain | [ |
[Ru(bpy)3]2+ (0.16-10 mM) | ammonium persulphate (20-100 mM) | silk fibroin (10-300 mg/mL) | - | L5 | 180 s | tunable mechanical properties and water uptake capacity | [ |
Ru(bpy)3Cl2 (2 mM) | sodium persulfate (10-50 mM) | rec-1 and An16 (10 mg/mL); collagen | 430-480 nm | L6 | 15-50 mm and 20 s | improve stabilization of tissues | [ |
Ru(bpy)3Cl2 (1 mM) | sodium persulfate (20-40 mM) | α-keratose (100 mM) | 300-1200 nm | L7 | 15 cm and 1 min | biocompatibility and moderate mechanical properties | [ |
[Ru(bpy)3]2+ (2 mM) | sodium persulfate (20 mM) | fibrinogen (100-150 mg/mL) | - | L8 | 15 cm and 20 s | high mechanical properties and no cytotoxicity | [ |
[Ru(bpy)3]2+ (1 mM) | sodium persulfate (20 mM) | gelatin (100-175 mg/mL) | 300-1200 nm | L9 | 150 mm and 30 s | highly elastic tissue sealant | [ |
RuBPY (5 mM) | ammonium persulphate (28 mM) | silk fibroin (200 mg/mL) | - | L10 | 150 s | Young’s modulus ~8 MPa and tensile toughness ~2.4 MJ/m3 | [ |
[Ru(bpy)3]2+ (5 × 10-6 M) | ammonium persulphate (1.25 × 10-4 M) | SP1S98Y (10 -5 M) | - | L11 | 20 cm | prominent structural stability | [ |
[Ru(bpy)3]2+ (5 mM) | ammonium persulphate (28 mM) | silk fibroin (150 mg/mL); rec1-resilin (20 mg/mL) | - | L12 | 150-180 s | strong mechanical properties | [ |
[Ru(bpy)3]2+ (1 mM) | sodium persulfate (50 mM) | silk fibroin | 450 nm | - | 60 s | remarkable mechanical properties and biocatalyst for CO2 | [ |
Ru(II)bpy32+ (2 mM) | sodium persulfate (10-30 mM) | recombinant mussel adhesive proteins | 460 nm | L13 | 20 mm and 60 s | strong wet tissue adhesion | [ |
Ru(bpy)3Cl2 (3.3 μL, 27.6 mM) | ammonium persulfate (15.6 μL, 178 mM) | FmocFFGGGY DMSO (15 μL, 100 mg/mL) | - | L14 | - | high mechanical properties | [ |
Ru(bpy)3Cl2 (8 μL, 18.9 mM) | ammonium persulfate (16 μL, 273.9 mM). | peptide (0.8 wt%) | - | L15 | - | elastomeric peptide hydrogel with controlled CO-release | [ |
Ru(II)bpy32+ (1 mM) | sodium persulfate (40 mM) | marine-derived aneroin protein (10-30 wt/vot) | 452 | L16 | - | biocompatible and 3D printable ink | [ |
Ru(bpy)3Cl2 (1.5 mg/mL) | sodium persulfate (2.4 mg/mL) | bovine fibrinogen (2 mg/mL) | 465 | L17 | 20 s | enhanced the fiber density and mechanical stiffness | [ |
photoinitiator (concentration) | Protein (concentration) | Photon | Light source | Distance and time | Result | References |
---|---|---|---|---|---|---|
riboflavin 5′-monophosphate (0.2 -2 mM) | silk fibroin (5-6 wt.%) | 450 nm | L1 | 0-60 min | form a tight association with native corneal collagen. | [ |
riboflavin (0.1 %)/riboflavin 5′-phosphate (0.5 %) | corneal | 365-370 nm | L2 | 30 min | corneal wound repair | [ |
riboflavin 5′-phosphate sodium salt hydrate (0.001-0.1 %) | collagen (0.27 % w/v) | - | L3 | 1-5 min | improve mechanical properties | [ |
riboflavin 5-monophosphate sodium salt dihydrate (0.1-1.0 mM) | bovine type I collagen (0.5 %) | 475 nm | L4 | 40-600 s | no cytotoxicity | [ |
riboflavin (0.25 mM) | rat-tail single molecule collagen type I (2.08 mg/mL) | 465 nm | L5 | 10 cm and 2.5- 30 min | improve mechanical properties | [ |
riboflavin 5′-monophosphate sodium salt hydrate (2 wt%) | collagen | - | L6 | 54 mm and 30 s | cytocompatibility and improve mechanical and thermal properties. | [ |
riboflavin-5-phosphate (0.1 %) | dentin collagen- matrix and resin/dentin interface | 368 nm | L7 | 1 cm amd 2 min | stabilize the collagen fibrillar network and enhance resin infiltration and hybrid layer formation | [ |
riboflavin (5-40 μM, pH~7.5) | HMWK (500-600 nmoles) | - | L8 | 1 cm and 0-60 min | susceptibility of HMWK to oxidation may arise from oxidative modifications | [ |
riboflavin (25 μM, pH~7.4) | collagen (0.5 mg/mL) | 365 nm | L9 | 2 h | study the mechanism of riboflavin-sensitized photodynamic modification of collagen | [ |
riboflavin (1 mM) and sodium persulfate (200 mM) | keratin (4% wt/vol) | - | L10 | 6-96 min | property can be controlled by crosslinking degree | [ |
flavin mononucleotide (1 × 10-3 M) | PEG8NB (2.5 wt%) and peptide (5 × 10-3 M) | 440 nm | L11 | 1-5 min | stiffening gels with highly cytocompatible | [ |
riboflavin-5′ sodium phosphate (0.1 mM) | silk fibroin (10-50 mg/mL) | 365 nm | L12 | 30 min | highly elastomeric photocurable hydrogels | [ |
Table 2 Regulating factors of photo-crosslinking in the riboflavin-mediated method.
photoinitiator (concentration) | Protein (concentration) | Photon | Light source | Distance and time | Result | References |
---|---|---|---|---|---|---|
riboflavin 5′-monophosphate (0.2 -2 mM) | silk fibroin (5-6 wt.%) | 450 nm | L1 | 0-60 min | form a tight association with native corneal collagen. | [ |
riboflavin (0.1 %)/riboflavin 5′-phosphate (0.5 %) | corneal | 365-370 nm | L2 | 30 min | corneal wound repair | [ |
riboflavin 5′-phosphate sodium salt hydrate (0.001-0.1 %) | collagen (0.27 % w/v) | - | L3 | 1-5 min | improve mechanical properties | [ |
riboflavin 5-monophosphate sodium salt dihydrate (0.1-1.0 mM) | bovine type I collagen (0.5 %) | 475 nm | L4 | 40-600 s | no cytotoxicity | [ |
riboflavin (0.25 mM) | rat-tail single molecule collagen type I (2.08 mg/mL) | 465 nm | L5 | 10 cm and 2.5- 30 min | improve mechanical properties | [ |
riboflavin 5′-monophosphate sodium salt hydrate (2 wt%) | collagen | - | L6 | 54 mm and 30 s | cytocompatibility and improve mechanical and thermal properties. | [ |
riboflavin-5-phosphate (0.1 %) | dentin collagen- matrix and resin/dentin interface | 368 nm | L7 | 1 cm amd 2 min | stabilize the collagen fibrillar network and enhance resin infiltration and hybrid layer formation | [ |
riboflavin (5-40 μM, pH~7.5) | HMWK (500-600 nmoles) | - | L8 | 1 cm and 0-60 min | susceptibility of HMWK to oxidation may arise from oxidative modifications | [ |
riboflavin (25 μM, pH~7.4) | collagen (0.5 mg/mL) | 365 nm | L9 | 2 h | study the mechanism of riboflavin-sensitized photodynamic modification of collagen | [ |
riboflavin (1 mM) and sodium persulfate (200 mM) | keratin (4% wt/vol) | - | L10 | 6-96 min | property can be controlled by crosslinking degree | [ |
flavin mononucleotide (1 × 10-3 M) | PEG8NB (2.5 wt%) and peptide (5 × 10-3 M) | 440 nm | L11 | 1-5 min | stiffening gels with highly cytocompatible | [ |
riboflavin-5′ sodium phosphate (0.1 mM) | silk fibroin (10-50 mg/mL) | 365 nm | L12 | 30 min | highly elastomeric photocurable hydrogels | [ |
Fig. 2. (a) The structure of rifoflavin. (b) The proposed mechanism of rifoflavin-mediated photo-crosslinking method. Reproduced with permission [56]. Copyright 2016, American Chemical Society.
Fig. 3. (a) Fabrication of the hydrogel through photo-chemical and physical crosslinking. (b) Photographs of the hydrogel undergoing ~60 % compression. (c) Representative compressive stress-strain curve and (d) compressive modulus of the hydrogel. Reproduced with permission [12]. Copyright 2017, Springer Nature.
Fig. 4. (a) Brightfield microscope image of a high-resolution pattern of silk gel produced by photolithography and (b) histologic inspection of silk (indicated by the bracket) attached to corneal collagen. Reproduced with permission [38]. Copyright 2016, John Wiley and Sons.
Fig. 5. (a) The chemical structure of eosin Y. Reproduced with permission [66]. Copyright 2008, American Chemical Society. Chemical structures of (b) camphorquinone and (c) diphenyl iodonium hexafluorophosphate. Reproduced with permission [67]. Copyright 2019, American Chemical Society.
Fig. 6. Covalently assembled (b) nanocapsules and (c) thin films by the (a) tyrosine-rich short peptide (YYAYY). (d) Fluorescence image and (e) representative load-depth curve of the film measured by nanoindentation. Reproduced with permission [21]. Copyright 2016, John Wiley and Sons. Frequency sweep rheology of i-CORH (f) before and (g) after photo-crosslinking at a strain of 0.05 %. (h) Stability test of CORH in water over time. Reproduced with permission [61]. Copyright 2019, Royal Society of Chemistry.
Fig. 7. (a) Rheological measurements of suckerin-19 hydrogels and (b) elastic modulus of suckerin-19 films. (c) The comparison of elasticity between biological tissues and suckerin-19, illustrating suckerin-19 can be tailored to match biological tissues like soft tissues, stiffer ligament and muscle tissues. Reproduced with permission [3]. Copyright 2015, John Wiley and Sons.
[1] |
C. Xiao, M. Li, B. Wang, M.F. Liu, C. Shao, H. Pan, Y. Lu, B.B. Xu, S. Li, D. Zhan, Y. Jiang, R. Tang, X.Y. Liu, H. Colfen, Nat. Commun. 8 (1) (2017), 1398.
DOI URL PMID |
[2] |
C. Zhang, D. A. McAdams 2nd., J.C. Grunlan, Adv Mater 28 (30) (2016) 6292-6321.
DOI URL PMID |
[3] |
D. Ding, P.A. Guerette, J. Fu, L. Zhang, S.A. Irvine, A. Miserez, Adv Mater 27 (26) (2015) 3953-3961.
DOI URL PMID |
[4] |
B.P. Partlow, C.W. Hanna, J. Rnjak-Kovacina, J.E. Moreau, M.B. Applegate, K.A. Burke, B. Marelli, A.N. Mitropoulos, F.G. Omenetto, D.L. Kaplan, Adv. Funct. Mater. 24 (29) (2014) 4615-4624.
DOI URL PMID |
[5] |
S. Garcia-Castineiras, J. Dillon, A. Spector, Science 199 (4331) (1978) 897-899.
DOI URL PMID |
[6] |
K.I. Min, D.H. Kim, H.J. Lee, L. Lin, D.P. Kim, Angew. Chem. Int. Ed. Engl. 57 (20) (2018) 5630-5634.
DOI URL PMID |
[7] | J. Lee, M. Ju, O.H. Cho, Y. Kim, K.T. Nam, Adv. Sci. 6 (4) (2019). |
[8] |
S. Mukherjee, M. Fang, W.M. Kok, E.A. Kapp, V.J. Thombare, R. Huguet, C.A. Hutton, G.E. Reid, B.R. Roberts, Anal. Chem. 91 (19) (2019) 12129-12133.
DOI URL PMID |
[9] |
C.M. Elvin, A.G. Carr, M.G. Huson, J.M. Maxwell, R.D. Pearson, T. Vuocolo, N.E. Liyou, D.C. Wong, D.J. Merritt, N.E. Dixon, Nature 437 (7061) (2005) 999-1002.
URL PMID |
[10] |
D.J. Raven, C. Earland, M. Little, Biochim. Biophys. Acta 251 (1) (1971) 96-99.
DOI URL PMID |
[11] | T. Weis-Fogh, J. Exp. Biol. 37 (4) (1960) 889-907. |
[12] | C.S. Kim, Y.J. Yang, S.Y. Bahn, H.J. Cha, NPG Asia Mater. 9 (6) (2017). |
[13] |
L.A. Marquez, H.B. Dunford, J. Biol. Chem. 270 (51) (1995) 30434-30440.
DOI URL PMID |
[14] |
J. Choi, M. McGill, N.R. Raia, O. Hasturk, D.L. Kaplan, Adv. Healthcare Mater. 8 (2019) 1900644.
DOI URL |
[15] | J.L. Whittaker, N.R. Choudhury, N.K. Dutta, A. Zannettino, J. Mater. Chem. BMater. Biol. Med. 2 (37) (2014) 6259-6270. |
[16] |
J.L. Whittaker, N.K. Dutta, C.M. Elvin, N.R. Choudhury, J. Mater. Chem. B 3 (32) (2015) 6576-6579.
DOI URL PMID |
[17] |
I.L. Wu, M.A. Patterson, H. E. Carpenter Desai, R.A. Mehl, G. Giorgi, V.P. Conticello, Chembiochem 14 (8) (2013) 968-978.
DOI URL |
[18] |
D. Duquette, M.-J. Dumont, Polym. Bull. 76 (5) (2018) 2683-2710.
DOI URL |
[19] |
C. Houee-Levin, K. Bobrowski, L. Horakova, B. Karademir, C. Schoneich, M.J. Davies, C.M. Spickett, Free Radic. Res. 49 (4) (2015) 347-373.
DOI URL PMID |
[20] |
D. Scheidegger, G. Larsen, S.C. Kivatinitz, Int. Dairy J. 55 (2016) 64-71.
DOI URL |
[21] |
K.I. Min, G. Yun, Y. Jang, K.R. Kim, Y.H. Ko, H.S. Jang, Y.S. Lee, K. Kim, D.P. Kim, Angew. Chem. Int. Ed. Engl. 55 (24) (2016) 6925-6928.
DOI URL PMID |
[22] |
G. Ciamician, Science 36 (926) (1912) 385-394.
DOI URL PMID |
[23] |
D.M. Schultz, T.P. Yoon, Science 343 (6174) (2014), 1239176.
DOI URL PMID |
[24] |
J. Xuan, W.J. Xiao, Angew. Chem. Int. Ed. Engl. 51 (28) (2012) 6828-6838.
DOI URL PMID |
[25] |
J.M. Narayanam, C.R. Stephenson, Chem. Soc. Rev. 40 (1) (2011) 102-113.
DOI URL PMID |
[26] |
D.A. Fancy, T. Kodadek, Proc. Natl. Acad. Sci. 96 (11) (1999) 6020-6024.
DOI URL PMID |
[27] |
D. Zhang, H. Peng, B. Sun, S. Lyu, Fibers Polym. 18 (10) (2017) 1831-1840.
DOI URL |
[28] |
J.L. Whittaker, N.K. Dutta, A. Zannettino, N.R. Choudhury, J. Mater. Chem. B 4 (33) (2016) 5519-5533.
DOI URL PMID |
[29] |
M.Y. Truong, N.K. Dutta, N.R. Choudhury, M. Kim, C.M. Elvin, K.M. Nairn, A.J. Hill, Biomaterials 32 (33) (2011) 8462-8473.
DOI URL |
[30] |
A.V. Vashi, J.A. Ramshaw, V. Glattauer, C.M. Elvin, R.E. Lyons, J.A. Werkmeister, Biofabrication 5 (3) (2013), 035005.
DOI URL PMID |
[31] |
L. Sando, M. Kim, M.L. Colgrave, J.A. Ramshaw, J.A. Werkmeister, C.M. Elvin, J. Biomed. Mater. Res. A. 95 (3) (2010) 901-911.
DOI URL PMID |
[32] |
C.M. Elvin, A.G. Brownlee, M.G. Huson, T.A. Tebb, M. Kim, R.E. Lyons, T. Vuocolo, N.E. Liyou, T.C. Hughes, J.A. Ramshaw, J.A. Werkmeister, Biomaterials 30 (11) (2009) 2059-2065.
DOI URL PMID |
[33] |
A.V. Vashi, J.A. Werkmeister, T. Vuocolo, C.M. Elvin, J.A. Ramshaw, J. Biomed. Mater. Res. A. 100 (9) (2012) 2239-2243.
URL PMID |
[34] |
C.M. Elvin, T. Vuocolo, A.G. Brownlee, L. Sando, M.G. Huson, N.E. Liyou, P.R. Stockwell, R.E. Lyons, M. Kim, G.A. Edwards, G. Johnson, G.A. McFarland, J.A. Ramshaw, J.A. Werkmeister, Biomaterials 31 (32) (2010) 8323-8331.
DOI URL |
[35] |
R. Balu, S. Reeder, R. Knott, J. Mata, L. de Campo, N.K. Dutta, N.R. Choudhury, Langmuir 34 (31) (2018) 9238-9251.
DOI URL PMID |
[36] |
L. Zhao, Y. Li, T. Wang, S. Qiao, X. Li, R. Wang, Q. Luo, C. Hou, J. Xu, J. Liu, J. Mater. Chem. B 6 (1) (2018) 75-83.
DOI URL PMID |
[37] |
N. Beztsinna, M. Sole, N. Taib, I. Bestel, Biomaterials 80 (2016) 121-133.
DOI URL PMID |
[38] |
M.B. Applegate, B.P. Partlow, J. Coburn, B. Marelli, C. Pirie, R. Pineda, D.L. Kaplan, F.G. Omenetto, Adv Mater 28 (12) (2016) 2417-2420.
DOI URL PMID |
[39] |
E. Lorenzo-Martin, P. Gallego-Munoz, L. Ibares-Frias, S. Marcos, P. Perez-Merino, I. Fernandez, I.E. Kochevar, M.C. Martinez-Garcia, Invest. Ophthalmol. Vis. Sci. 59 (12) (2018) 4821-4830.
DOI URL PMID |
[40] |
G. Wollensak, H. Aurich, C. Wirbelauer, S. Sel, J. Cataract Refract. Surg. 36 (1) (2010) 114-120.
DOI URL PMID |
[41] |
M. Yamashita, S.S. Rosatto, L.T. Kubota, J. Braz. Chem. Soc. 13 (5) (2002) 635-641.
DOI URL |
[42] |
J.Y. Liang, J.P. Yuann, Z.J. Hsie, S.T. Huang, C.C. Chen, J. Photochem. Photobiol. B 174 (2017) 355-363.
DOI URL PMID |
[43] |
H.Y. Liu, H.D. Nguyen, C.C. Lin, Adv. Healthc. Mater. 7 (22) (2018), e1800954.
DOI URL PMID |
[44] |
R.R. Batchelor, G. Kwandou, P.T. Spicer, M.H. Stenzel, Polym. Chem. 8 (6) (2017) 980-984.
DOI URL |
[45] |
J. Heo, R.H. Koh, W. Shim, H.D. Kim, H.G. Yim, N.S. Hwang, Drug Deliv. Transl. Res. 6 (2) (2016) 148-158.
DOI URL PMID |
[46] |
S. Ibusuki, G.J. Halbesma, M.A. Randolph, R.W. Redmond, I.E. Kochevar, T.J. Gill, Tissue Eng. 13 (8) (2007) 1995-2001.
DOI URL PMID |
[47] |
H. Rich, M. Odlyha, U. Cheema, V. Mudera, L. Bozec, J. Mater. Sci. Mater. Med. 25 (1) (2014) 11-21.
DOI URL PMID |
[48] |
R. Tonndorf, E. Gossla, D. Aibibu, M. Lindner, M. Gelinsky, C. Cherif, Biomed. Mater. 14 (1) (2018), 015007.
DOI URL PMID |
[49] |
U. Daood, K. Iqbal, L.I. Nitisusanta, A.S. Fawzy, J. Biomed. Mater. Res. A. 101 (7) (2013) 1846-1856.
DOI URL PMID |
[50] |
J. Hu, Y. Hou, H. Park, B. Choi, S. Hou, A. Chung, M. Lee, Acta Biomater. 8 (5) (2012) 1730-1738.
DOI URL PMID |
[51] |
A.L. Marcovich, A. Brandis, O. Daphna, I. Feine, I. Pinkas, R. Goldschmidt, V. Kalchenko, T. Berkutzki, H.D. Wagner, Y. Salomon, A. Scherz, Invest. Ophthalmol. Vis. Sci. 53 (10) (2012) 6378-6388.
DOI URL PMID |
[52] | J. Navarro, J. Swayambunathan, M. Lerman, M. Santoro, J.P. Fisher, ActaBiomater. 83 (2019) 177-188. |
[53] |
S.P. Baba, D.K. Patel, B. Bano, Free Radic. Res. 38 (4) (2004) 393-403.
DOI URL PMID |
[54] |
Y. Kato, K. Uchida, S. Kawakishi, Photochem. Photobiol. 59 (3) (1994) 343-349.
DOI URL PMID |
[55] |
F. Raiskup, E. Spoerl, Principles, Ocul Surf 11 (2) (2013) 65-74.
DOI URL PMID |
[56] |
B.P. Partlow, M.B. Applegate, F.G. Omenetto, D.L. Kaplan, ACS Biomater. Sci. Eng. 2 (12) (2016) 2108-2121.
DOI URL PMID |
[57] |
H. Yuk, T. Zhang, S. Lin, G.A. Parada, X. Zhao, Nat. Mater. 15 (2) (2016) 190-196.
DOI URL PMID |
[58] | G. Sun, Y. Huang, J. Shao, Q. Fan, 2019 China Textile Engineering Society Academic Awardand Paper Award, 2019. |
[59] |
J.L. Whittaker, R. Balu, R. Knott, L. de Campo, J.P. Mata, C. Rehm, A.J. Hill, N.K. Dutta, N. Roy Choudhury, Int. J. Biol. Macromol. 114 (2018) 998-1007.
DOI URL PMID |
[60] |
Y.F. Huang, S.C. Lu, Y.C. Huang, J.S. Jan, Small 10 (10) (2014) 1939-1944.
DOI URL PMID |
[61] |
I. Kim, W.Y. Bang, W.H. Park, E.H. Han, E. Lee, Nanoscale 11 (37) (2019) 17327-17333.
DOI URL PMID |
[62] |
E.Y. Jeon, B.H. Hwang, Y.J. Yang, B.J. Kim, B.H. Choi, G.Y. Jung, H.J. Cha, Biomaterials 67 (2015) 11-19.
DOI URL PMID |
[63] |
Y. Ding, Y. Li, M. Qin, Y. Cao, W. Wang, Langmuir 29 (43) (2013) 13299-13306.
DOI URL PMID |
[64] |
C. Giulivi, N.J. Traaseth, K.J. Davies, Amino Acids 25 (3-4) (2003) 227-232.
DOI URL |
[65] |
W. Han Ang, P.J. Dyson, Eur. J. Inorg. Chem. 2006 (20) (2006) 4003-4018.
DOI URL PMID |
[66] |
D.M. Martino, D. Reyna, D.A. Estenoz, S. Trakhtenberg, J.C. Warner, J. Phys. Chem. A 112 (21) (2008) 4786-4792.
DOI URL PMID |
[67] |
G. Sun, Y. Huang, D. Li, E. Chen, Y. Zhong, Q. Fan, J. Shao, Ind. Eng. Chem. Res. 58 (22) (2019) 9266-9275.
DOI URL |
[68] |
T.Y. Park, Y.J. Yang, D.H. Ha, D.W. Cho, H.J. Cha, Biofabrication 11 (3) (2019).
DOI URL PMID |
[69] |
J.Y. Hsieh, M.T. Keating, T.D. Smith, V.S. Meli, E.L. Botvinick, W.F. Liu, Apl Bioeng. 3 (1) (2019).
DOI URL PMID |
[70] |
D. Kuang, F. Jiang, F. Wu, K. Kaur, S. Ghosh, S.C. Kundu, S. Lu, Int. J. Biol. Macromol. 134 (2019) 838-845.
DOI URL PMID |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||