J. Mater. Sci. Technol. ›› 2020, Vol. 40: 146-157.DOI: 10.1016/j.jmst.2019.09.020
Previous Articles Next Articles
Qiang Zhua, Chuanjie Wanga, Kai Yanga, Gang Chena, Heyong Qinb, Peng Zhanga*()
Received:
2019-07-04
Revised:
2019-08-18
Accepted:
2019-09-10
Published:
2020-03-01
Online:
2020-04-01
Contact:
Zhang Peng
Qiang Zhu, Chuanjie Wang, Kai Yang, Gang Chen, Heyong Qin, Peng Zhang. Plastic deformation behavior of a nickel-based superalloy on the mesoscopic scale[J]. J. Mater. Sci. Technol., 2020, 40: 146-157.
Fig. 1. Microstructures of specimens under various annealing parameters. (a) 1323 K, 1 h; (b) 1373 K, 1 h; (c) 1423 K, 1 h; (d) 1473 K, 1 h; (e) 1523 K, 1 h; (f) 1523 K, 2 h; (g) 1523 K, 4 h.
Fig. 2. Grain size distribution histograms of specimens under various annealing parameters. (a) 1323 K, 1 h; (b) 1373 K, 1 h; (c) 1423 K, 1 h; (d) 1473 K, 1 h; (e) 1523 K, 1 h; (f) 1523 K, 2 h; (g) 1523 K, 4 h.
Solution temperature (K) | Solution time (h) | Average grain size, d (μm) | Standard deviation (μm) | Specimen diameter, D (mm) | D/d |
---|---|---|---|---|---|
1323 | 1 | 55.8 | 15.6 | 1.56 | 27.9 |
1373 | 1 | 76.2 | 13.8 | 20.5 | |
1423 | 1 | 98.7 | 25.6 | 15.8 | |
1473 | 1 | 143.3 | 37.0 | 10.9 | |
1523 | 1 | 161.4 | 44.8 | 9.7 | |
1523 | 2 | 181.5 | 52.2 | 8.6 | |
1523 | 4 | 208.4 | 56.8 | 7.4 |
Table 1 Statistical results of grain size and specimen diameter to grain size ratio.
Solution temperature (K) | Solution time (h) | Average grain size, d (μm) | Standard deviation (μm) | Specimen diameter, D (mm) | D/d |
---|---|---|---|---|---|
1323 | 1 | 55.8 | 15.6 | 1.56 | 27.9 |
1373 | 1 | 76.2 | 13.8 | 20.5 | |
1423 | 1 | 98.7 | 25.6 | 15.8 | |
1473 | 1 | 143.3 | 37.0 | 10.9 | |
1523 | 1 | 161.4 | 44.8 | 9.7 | |
1523 | 2 | 181.5 | 52.2 | 8.6 | |
1523 | 4 | 208.4 | 56.8 | 7.4 |
Fig. 3. Pole figures for specimens under various annealing parameters. (a) 1323 K, 1 h; (b) 1373 K, 1 h; (c) 1423 K, 1 h; (d) 1473 K, 1 h; (e) 1523 K, 1 h; (f) 1523 K, 2 h; (g) 1523 K, 4 h.
Parameter | Effect on plastic deformation |
---|---|
σ0(ε) | Lattice frictional resistance generated when moving a single dislocation |
Khp(ε) | Propagating general yield across the polycrystal boundaries |
d | Grain boundary strengthening |
M | Average effect of grain orientation |
M1 | Average effect of grain orientation for the grains in Zone I |
M2 | Average effect of grain orientation for the grains in Zone II |
M3 | Average effect of grain orientation for the grains in Zone III |
τc(ε) | Ability to resist plastic deformation |
θ | Effect of grain boundary density on the overall mechanical property |
θ1 | Effect of grain boundary density in Zone I on the mechanical property |
θ2 | Effect of grain boundary density in Zone II on the mechanical property |
θ3 | Effect of grain boundary density in Zone III on the mechanical property |
η1 | Effect of radial change rate of grain boundary on grain boundary factor |
η2 | Effect of axial change rate of grain boundary on grain boundary factor |
Table 2 Effects of parameters on plastic deformation.
Parameter | Effect on plastic deformation |
---|---|
σ0(ε) | Lattice frictional resistance generated when moving a single dislocation |
Khp(ε) | Propagating general yield across the polycrystal boundaries |
d | Grain boundary strengthening |
M | Average effect of grain orientation |
M1 | Average effect of grain orientation for the grains in Zone I |
M2 | Average effect of grain orientation for the grains in Zone II |
M3 | Average effect of grain orientation for the grains in Zone III |
τc(ε) | Ability to resist plastic deformation |
θ | Effect of grain boundary density on the overall mechanical property |
θ1 | Effect of grain boundary density in Zone I on the mechanical property |
θ2 | Effect of grain boundary density in Zone II on the mechanical property |
θ3 | Effect of grain boundary density in Zone III on the mechanical property |
η1 | Effect of radial change rate of grain boundary on grain boundary factor |
η2 | Effect of axial change rate of grain boundary on grain boundary factor |
Fig. 14. End surface topographies of specimens with various grain sizes after uniaxial compression. (a) d = 55.87 μm; (b) d = 76.2 μm; (c) d = 98.78 μm; (d) d = 143.38 μm; (e) d = 161.44 μm; (f) d = 181.51 μm; (g) d = 208.4 μm.
Fig. 15. Side surface topographies of specimens with various grain sizes after uniaxial compression. (a) d = 55.87 μm; (b) d = 76.2 μm; (c) d = 98.78 μm; (d) d = 143.38 μm; (e) d = 161.44 μm; (f) d = 181.51 μm; (g) d = 208.4 μm.
|
[1] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
[2] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[3] | D.X. Han, L. Zhao, S.H. Chen, G. Wang, K.C. Chan. Critical transitions in the shape morphing of kirigami metallic glass [J]. J. Mater. Sci. Technol., 2021, 61(0): 204-212. |
[4] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Xiangdong Zha, Yingche Ma, Kui Liu. Microstructure evolution and stress rupture properties of K4750 alloys with various B contents during long-term aging [J]. J. Mater. Sci. Technol., 2021, 73(0): 108-115. |
[5] | Hui Wang, Cheng Lu, Kiet Tieu, Yu Liu. A crystal plasticity FE study of macro- and micro-subdivision in aluminium single crystals {001}<110> multi-pass rolled to a high reduction [J]. J. Mater. Sci. Technol., 2021, 76(0): 231-246. |
[6] | Ruihong Wang, Shengyu Jiang, Bao’an Chen, Zhixiang Zhu. Size effect in the Al3Sc dispersoid-mediated precipitation and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2020, 57(0): 78-84. |
[7] | Guang-Jian Yuan, Xian-Cheng Zhang, Bo Chen, Shan-Tung Tu, Cheng-Cheng Zhang. Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach [J]. J. Mater. Sci. Technol., 2020, 38(0): 28-38. |
[8] | Zhao Jie, Lv Liangxing, Wang Kehuan, Liu Gang. Effects of strain state and slip mode on the texture evolution of a near-α TA15 titanium alloy during hot deformation based on crystal plasticity method [J]. J. Mater. Sci. Technol., 2020, 38(0): 125-134. |
[9] | Hongyu Wu, Dong Zhang, Biaobiao Yang, Chao Chen, Yunping Li, Kechao Zhou, Liang Jiang, Ruiping Liu. Microstructural evolution and defect formation in a powder metallurgy nickel-based superalloy processed by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 7-17. |
[10] | Yinchuan Wang, Hua Huang, Gaozhi Jia, Guizhou Ke, Jian Zhang, Guangyin Yuan. Effect of grain size on the mechanical properties of Mg foams [J]. J. Mater. Sci. Technol., 2020, 58(0): 46-54. |
[11] | S.H. Chen, T. Li, W.J. Chang, H.D. Yang, J.C. Zhang, H.H. Tang, S.D. Feng, F.F. Wu, Y.C Wu. On the formation of shear bands in a metallic glass under tailored complex stress fields [J]. J. Mater. Sci. Technol., 2020, 53(0): 112-117. |
[12] | Qiang Zhu, Gang Chen, Chuanjie Wang, Lukuan Cheng, Heyong Qin, Peng Zhang. Microstructure evolution and mechanical property characterization of a nickel-based superalloy at the mesoscopic scale [J]. J. Mater. Sci. Technol., 2020, 47(0): 177-189. |
[13] | K.S. Chin, S. Idapalapati, D.T. Ardi. Thermal stress relaxation in shot peened and laser peened nickel-based superalloy [J]. J. Mater. Sci. Technol., 2020, 59(0): 100-106. |
[14] | Xumin Zhu, Congyang Gong, Yun-Fei Jia, Runzi Wang, Chengcheng Zhang, Yao Fu, Shan-Tung Tu, Xian-Cheng Zhang. Influence of grain size on the small fatigue crack initiation and propagation behaviors of a nickel-based superalloy at 650 °C [J]. J. Mater. Sci. Technol., 2019, 35(8): 1607-1617. |
[15] | Shengyu Jiang, Ruihong Wang. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2019, 35(7): 1354-1363. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||