J. Mater. Sci. Technol. ›› 2020, Vol. 57: 78-84.DOI: 10.1016/j.jmst.2020.03.056
• Research Article • Previous Articles Next Articles
Ruihong Wanga,*(), Shengyu Jianga, Bao’an Chenb, Zhixiang Zhub
Received:
2020-02-04
Accepted:
2020-03-03
Published:
2020-11-15
Online:
2020-11-20
Contact:
Ruihong Wang
Ruihong Wang, Shengyu Jiang, Bao’an Chen, Zhixiang Zhu. Size effect in the Al3Sc dispersoid-mediated precipitation and mechanical/electrical properties of Al-Mg-Si-Sc alloys[J]. J. Mater. Sci. Technol., 2020, 57: 78-84.
Fig. 1. Representative TEM images to show the Al3Sc dispersoids in the FA-I (a and c) and the FA-II (b and d) samples. (a) and (b) are in low magnification, and (c) and (d) in high magnification. Inset in (c) is a picture overlapping the corresponding GPA εxx strain field with the HRTEM image. The statistical size distribution of Al3Sc dispersoids is shown in (e) and (f), respectively, for the FA-I and FA-II samples.
Fig. 2. Representative TEM images to show the precipitates in the SA-I sample aged for 4 h (a) and 8 h (b), respectively. (c) is a magnified TEM image in the 8 h-aged SA-I sample. (d) - (f) are representative TEM image, locally magnified HRTEM image, and corresponding GPA image (overlapping on the HRTEM image) to demonstrate a β″ nucleus on a coherent Al3Sc dispersoid. (h) and (i) are representative TEM images to show two and three β″ nuclei on a Al3Sc dispersoid. The structure of β″ is determined from (j).
Fig. 3. (a) A representative TEM image to show the precipitation around a coarse Al3Sc dispersoid with a size of ~ 70 nm in the SA-II sample aged for 4 h. The precipitates marked by arrows are Q' phase and marked by triangles are U2 phase. (b) - (d) are representative TEM images and corresponding structural analysis of the lath-shaped Q' precipitates. (e) - (g) are cross-sectional TEM images and corresponding structural analysis of the U2 precipitates.
Fig. 4. Hardness vs. electrical conductivity of the FA-I (open diamond), FA-II (open circle), SA-I (solid circles), and SA-II (solid diamonds) samples for comparison. The properties of Sc-free Al-Mg-Si alloy are also given for reference (half-solid hexagon).
[1] | W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, Mater. Sci. Eng. A 280 (2000) 37-49. |
[2] | D.J. Chakrabarti, D.E. Laughlin, Prog. Mater. Sci. 49(2004) 389-410. |
[3] | A.K. Gupta, D.J. Lloyd, S.A. Court, Mater. Sci. Eng. A 316 (2001) 11-17. |
[4] | Y.X. Lai, W. Fan, M.J. Yin, C.L. Wu, J.H. Chen, J. Mater. Sci. Technol. 41(2020) 127-138. |
[5] | Q. Lu, K. Li, H.N. Chen, M.J. Yang, X.Y. Lan, T. Yang, S.H. Liu, M. Song, L.F. Cao, Y. Du, J. Mater. Sci. Technol. 41(2020) 139-148. |
[6] | G. Lu, S. Nie, J.J. Wang, Y. Zhang, T.H. Wu, Y.J. Liu, C.M. Liu, J. Mater. Sci. Technol. 40(2020) 107-112. |
[7] | G.A. Edward, K. Stiller, G.L. Dunlop, M.J. Couper, Acta Mater. 46(1998) 3893-3904. |
[8] | K. Matsuda, Y. Sakaguchi, Y. Miyata, Y. Uetani, T. Sato, S.I. Kamio, J. Mater. Sci. 35(2000) 179-189. |
[9] | A.K. Sachdev, Metall. Mater. Trans. A 21 (1990) 165-175. |
[10] | X.X. Xu, Z. Yang, Y.L. He, G.X. Wang, X.L. He, Mater. Character. 119(2016) 114-119. |
[11] |
C.D. Marioara, S.J. Andersen, T.N. Stene, H. Hasting, J. Walmsley, A.T.J. Van Helvoort, R. Holmestad, Philos. Mag. 87(2007) 3385-3413.
DOI URL |
[12] | M.S. Remøea, K. Marthinsen, I. Westermann, K. Pedersen, J. Røyset, C. Marioara, Mater. Sci. Eng. A 693 (2017) 60-72. |
[13] | T. Saito, F.J.H. Ehlers, W. Lefebvre, D. Hernandez-Maldonado, R. Bjørge, C.D. Marioara, S.J. Andersen, E.A. Mørtsell, R. Holmestad, Scripta Mater. 110(2016) 6-9. |
[14] | K. Matsuda, D. Teguri, Y. Uetani, T. Sato, S. Ikeno, Scripta Mater. 47(2002) 833-837. |
[15] | S. Wenner, C.D. Marioara, S.J. Andersen, R. Holmesta, Mater. Sci. Eng. A 575 (2013) 241-247. |
[16] | M. Werinos, H. Antrekowitsch, E. Kozeschnik, T. Ebner, F. Moszner, J.F. Löffler, P.J. Uggowitzer, S. Pogatscher, Scripta Mater. 112(2016) 148-151. |
[17] | J. Røyset, N. Ryum, Int. Mater. Rev. 50(2005) 19-44. |
[18] | N.Q. Vo, D.C. Dunand, D.N. Seidman, Acta Mater. 63(2014) 73-85. |
[19] | M.E. Van Dalen, D.C. Dunand, D.N. Seidman, Acta Mater. 59(2011) 5224-5237. |
[20] | E.A. Marquis, D.C. Dunand, D.N. Seidman, Acta Mater. 51(2003) 4751-4760. |
[21] | E.A. Marquis, D.C. Dunand, D.N. Seidman, Acta Mater. 50(2002) 4021-4035. |
[22] | M.J. Jones, F.J. Humphreys, Acta Mater. 51(2003) 2149-2159. |
[23] | B.A. Chen, G. Liu, R.H. Wang, J.Y. Zhang, L. Jiang, J.J. Song, J. Sun, Acta Mater. 61(2013) 1676-1690. |
[24] | S.Y. Jiang, R.H. Wang, J. Mater. Sci. Technol. 35(2019) 1354-1363. |
[25] | S.Y. Jiang, R.H. Wang, Sci. Reports 8 (2018) 6202. |
[26] | M.J. H ÿtch, E. Snoeck, R. Kilaas, Ultramicroscopy 74 (1998) 131-146. |
[27] | E.A. Marquis, D.N. Seidman, Acta Mater. 49(2001) 1909-1919. |
[28] | S. Iwamura, Y. Miura, Acta Mater. 52(2004) 591-600. |
[29] | G. Du, J. Deng, Y.L. Wang, D.S. Yan, L.J. Rong, Scripta Mater. 61(2009) 532-535. |
[30] | E.A. Marquis, D.N. Seidman, M. Asta, C. Woodward, V. Ozolins, Phys. Rev. Lett. 91(2003), 036101. |
[31] | J.M. Rosalie, L. Bourgeois, Acta Mater. 60(2012) 6033-6041. |
[32] | Z.Y. Liu, S. Bai, X.W. Zhou, Y.X. Gu, Mater. Sci. Eng. A528(2011) 2217. |
[33] | K. Buchanan, K. Colas, J. Ribis, A. Lopez, J. Garnier, Acta Mater. 132(2017) 209-221. |
[34] | L.P. Ding, Z.H. Jia, J.F. Nie, Y.Y. Weng, L.F. Cao, H.W. Chen, X.Z. Wu, Q. Liu, Acta Mater. 145(2018) 437-450. |
[1] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
[2] | Wei Wu, Yongshan Wei, Hongjiang Chen, Keyan Wei, Zhitong Li, Jianhui He, Libo Deng, Lei Yao, Haitao Yang. In-situ encapsulation of α-Fe2O3 nanoparticles into ZnFe2O4 micro-sized capsules as high-performance lithium-ion battery anodes [J]. J. Mater. Sci. Technol., 2021, 75(0): 110-117. |
[3] | L. Zhou, C.L. Wu, P. Xie, F.J. Niu, W.Q. Ming, K. Du, J.H. Chen. A hidden precipitation scenario of the θ′-phase in Al-Cu alloys [J]. J. Mater. Sci. Technol., 2021, 75(0): 126-138. |
[4] | Yongliang Qi, Tinghui Cao, Hongxiang Zong, Yake Wu, Lin He, Xiangdong Ding, Feng Jiang, Shenbao Jin, Gang Sha, Jun Sun. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping [J]. J. Mater. Sci. Technol., 2021, 75(0): 154-163. |
[5] | Longqing Tang, Guowei Bo, Fulin Jiang, Shiwei Xu, Jie Teng, Dingfa Fu, Hui Zhang. Unravelling the precipitation evolutions of AZ80 magnesium alloy during non-isothermal and isothermal processes [J]. J. Mater. Sci. Technol., 2021, 75(0): 184-195. |
[6] | Zihong Wang, Xin Lin, Yao Tang, Nan Kang, Xuehao Gao, Shuoqing Shi, Weidong Huang. Laser-based directed energy deposition of novel Sc/Zr-modified Al-Mg alloys: columnar-to-equiaxed transition and aging hardening behavior [J]. J. Mater. Sci. Technol., 2021, 69(0): 168-179. |
[7] | Haoxue Yang, Jinshan Li, Xiangyu Pan, William Yi Wang, Hongchao Kou, Jun Wang. Nanophase precipitation and strengthening in a dual-phase Al0.5CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 1-7. |
[8] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
[9] | X.W. Liu, N. Gao, J. Zheng, Y. Wu, Y.Y. Zhao, Q. Chen, W. Zhou, S.Z. Pu, W.M. Jiang, Z.T. Fan. Improving high-temperature mechanical properties of cast CrFeCoNi high-entropy alloy by highly thermostable in-situ precipitated carbides [J]. J. Mater. Sci. Technol., 2021, 72(0): 29-38. |
[10] | D.X. Han, L. Zhao, S.H. Chen, G. Wang, K.C. Chan. Critical transitions in the shape morphing of kirigami metallic glass [J]. J. Mater. Sci. Technol., 2021, 61(0): 204-212. |
[11] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
[12] | Shenbao Jin, Zhenjiao Luo, Xianghai An, Xiaozhou Liao, Jiehua Li, Gang Sha. Composition-dependent dynamic precipitation and grain refinement in Al-Si system under high-pressure torsion [J]. J. Mater. Sci. Technol., 2021, 68(0): 199-208. |
[13] | Yuhui Zhang, Yuling Liu, Shuhong Liu, Hai-Lin Chen, Qing Chen, Shiyi Wen, Yong Du. Assessment of atomic mobilities and simulation of precipitation evolution in Mg-X (X=Al, Zn, Sn) alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 70-82. |
[14] | Y.X. Lai, W. Fan, M.J. Yin, C.L. Wu, J.H. Chen. Structures and formation mechanisms of dislocation-induced precipitates in relation to the age-hardening responses of Al-Mg-Si alloys [J]. J. Mater. Sci. Technol., 2020, 41(0): 127-138. |
[15] | Wanjun Yu, Yongting Zheng, Yongdong Yu. Precipitation mechanism and microstructural evolution of Al2O3/ZrO2(CeO2) solid solution powders consolidated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2020, 41(0): 149-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||