J. Mater. Sci. Technol. ›› 2021, Vol. 75: 110-117.DOI: 10.1016/j.jmst.2020.10.039
• Research Article • Previous Articles Next Articles
Wei Wua,b,1, Yongshan Weia,1, Hongjiang Chena, Keyan Weia, Zhitong Lia, Jianhui Hea, Libo Dengb, Lei Yaoa,*(), Haitao Yanga,*(
)
Received:
2020-08-21
Revised:
2020-09-23
Accepted:
2020-10-01
Published:
2021-06-10
Online:
2020-11-02
Contact:
Lei Yao,Haitao Yang
About author:
htyang@szu.edu.cn (H. Yang).1These authors contributed equally to this work.
Wei Wu, Yongshan Wei, Hongjiang Chen, Keyan Wei, Zhitong Li, Jianhui He, Libo Deng, Lei Yao, Haitao Yang. In-situ encapsulation of α-Fe2O3 nanoparticles into ZnFe2O4 micro-sized capsules as high-performance lithium-ion battery anodes[J]. J. Mater. Sci. Technol., 2021, 75: 110-117.
Fig. 2. (a) XRD patterns of the as-prepared α-Fe2O3, α-Fe2O3/ZnFe2O4 and ZnFe2O4 under varied thermal-annealing temperatures. XPS spectra of the α-Fe2O3/ZnFe2O4 composite: (b) survey scan, (c-e) Fe 2p, Zn 2p and O 1s spectra with high-resolution, respectively.
Fig. 3. SEM images of (a) α-Fe2O3 annealed at 350 ℃, (b) α-Fe2O3/ZnFe2O4 composite annealed at 450 ℃, and (c) ZnFe2O4 annealed at 550 ℃. (d, e) TEM and HRTEM images of α-Fe2O3/ZnFe2O4, respectively. (f-i) HAADF image and the EDS elemental mappings of Fe, Zn, O of α-Fe2O3/ZnFe2O4, respectively.
Fig. 4. (a-c) Charge/discharge profiles of α-Fe2O3, ZnFe2O4, and α-Fe2O3/ZnFe2O4, respectively, for the initial cycles between 0.01 and 3 V at 200 mA g-1. (d) CV profile of α-Fe2O3/ZnFe2O4 with the first 6 cycles between 0.01 and 3 V at a scan rate of 0.2 mV s-1. (e) Impedance spectra (inset shows the enlargements) and (f) the fitting of electron mobility for α-Fe2O3/ZnFe2O4, α-Fe2O3 and ZnFe2O4 electrodes. (g) Rate capability tested under different specific currents and (h) cycling performances of α-Fe2O3/ZnFe2O4 comparing with α-Fe2O3 and ZnFe2O4 at 200 mA g-1 for 500 cycles. (i) Cycling stability test of α-Fe2O3/ZnFe2O4 under different mass loadings and areal capacities at 100 mA g-1 for 50 cycles. (j) Areal capacity versus mass loading for the data shown in f, and the fit slope indicates the specific capacity. (k) CV curves at various sweep rates from 0.05 to 1.6 mV s-1. (l) The determination of b-value using the linear fitting plot of the peak currents to sweep rates of α-Fe2O3/ZnFe2O4.
[1] |
M. Armand, J.M. Tarascon, Nature 451 (2008) 652-657.
DOI PMID |
[2] |
Y.M. Chiang, Science 330 (2010) 1485-1486.
DOI URL |
[3] |
K. Kang, Y.S. Meng, J. Brèger, C.P. Grey, G. Ceder, Science 311 (2006) 977-980.
DOI URL |
[4] |
K. Turcheniuk, Nature 559 (2018) 467-470.
DOI URL |
[5] |
B. Xu, S. Qi, M. Jin, X. Cai, L. Lai, Z. Sun, X. Han, Z. Lin, H. Shao, P. Peng, Z. Xiang, J. Elshof, R. Tan, C. Liu, Z. Zhang, X. Duan, J. Ma, Chin. Chem. Lett. 30 (2019) 2053-2064.
DOI URL |
[6] |
Z. Wei, B. Ding, H. Dou, J. Gascon, X. Kong, Y. Xiong, B. Cai, R. Zhang, Y. Zhou, M. Long, J. Miao, Y. Dou, D. Yuan, J. Ma, Chin. Chem. Lett. 30 (2019) 2110-2122.
DOI URL |
[7] |
X. Fan, E. Hu, X. Ji, Y. Zhu, F. Han, S. Hwang, J. Liu, S. Bak, Z. Ma, T. Gao, S.C. Liou, J. Bai, X.Q. Yang, Y. Mo, K. Xu, D. Su, C. Wang, Nat. Commun. 9 (2018) 2324.
DOI URL |
[8] |
J. Lee, J. Moon, S.A. Han, J. Kim, V. Malgras, Y.U. Heo, H. Kim, S.M. Lee, H.K. Liu, S.X. Dou, Y. Yamauchi, M.S. Park, J.H. Kim, ACS Nano 13 (2019) 9607-9619.
DOI URL |
[9] |
J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough, P. Khalifah, Q. Li, B.Y. Liaw, P. Liu, A. Manthiram, Y.S. Meng, V.R. Subramanian, M.F. Toney, V.V. Viswanathan, M.S. Whittingham, J. Xiao, W. Xu, J. Yang, X.Q. Yang, J.G. Zhang, Nat. Energy 4 (2019) 180-186.
DOI URL |
[10] | E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Science 366 (2019) 8285. |
[11] |
Y. Qiao, H. Deng, P. He, H. Zhou, Joule 4 (2020) 1445-1458.
DOI URL |
[12] |
Q. Xu, J.K. Sun, Y.X. Yin, Y.G. Guo, Adv. Funct. Mater. 28 (2018), 1705235.
DOI URL |
[13] |
W. Wu, Y. Kang, M. Wang, D. Xu, J. Wang, Y. Cao, C. Wang, Y. Deng, J. Power Sources 464 (2020), 228244.
DOI URL |
[14] | J. Li, J. Yang, J. Wang, S. Lu, Rare Met. Mater. Eng. 38 (2019) 199-205. |
[15] |
Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, X. Sun, Adv. Energy Mater. 6 (2016), 1502175.
DOI URL |
[16] |
S.H. Yu, S.H. Lee, D.J. Lee, Y.E. Sung, T. Hyeon, Small 12 (2016) 2146-2172.
DOI URL |
[17] |
W. Wu, M. Wang, J. Wang, Z. Wei, T. Zhang, S.S. Chi, C. Wang, Y. Deng, Nano Energy 74 (2020), 104867.
DOI URL |
[18] |
Q. Li, Z. Liu, C. Wang, Y. Zhao, R. Che, Small 14 (2018), 1702574.
DOI URL |
[19] |
D.P. Opra, S.V. Gnedenkov, A.A. Sokolov, A.B. Podgorbunsky, A.Y. Ustinov, V.Y. Mayorov, V.G. Kuryavyi, S.L. Sinebryukhov, J. Mater. Sci. Technol. 54 (2020) 181-189.
DOI URL |
[20] |
J.S. Xu, Y.J. Zhu, ACS Appl. Mater. Interfaces 4 (2012) 4752-4757.
DOI URL |
[21] |
L. Xu, Y. Tian, T. Liu, H. Li, J. Qiu, S. Li, H. Li, S. Yuan, S. Zhang, Green Energy Environ 3 (2018) 156-162.
DOI URL |
[22] |
Y. Hu, H. Zhao, M. Tan, J. Liu, X. Shu, M. Zhang, S. Liu, Q. Ran, H. Li, X. Liu, J. Mater. Sci. Technol. 55 (2020) 173-181.
DOI URL |
[23] |
X. Sun, H. Zhang, L. Zhou, X. Huang, C. Yu, Small 12 (2016) 3732-3737.
DOI URL |
[24] |
D. Bresser, S. Passerini, B. Scrosati, Energy Environ. Sci. 9 (2016) 3348-3367.
DOI URL |
[25] |
X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, ACS Nano 5 (2011) 3333-3338.
DOI URL |
[26] |
J. He, L. Luo, Y. Chen, A. Manthiram, Adv. Mater. 29 (2017), 1702707.
DOI URL |
[27] |
Y. Nie, F. Wang, H. Zhang, D. Wei, S. Zhong, L. Wang, G. Zhang, H. Duan, R. Cao, Appl. Surf. Sci. 517 (2020), 146079.
DOI URL |
[28] |
Y.N. Wang, J.Y. Jiang, X.X. Liu, X. Liu, Y. Xiang, R. Wu, Y. Chen, J.S. Chen, Electrochim. Acta 336 (2020), 135690.
DOI URL |
[29] | H. Tabassum, R. Zou, A. Mahmood, Z. Liang, Q. Wang, H. Zhang, S. Gao, C. Qu, W. Guo, S. Guo, Adv. Mater. 30 (2018) 1702574. |
[30] |
L. Chen, Z. Li, G. Li, M. Zhou, B. He, J. Ouyang, W. Xu, W. Wang, Z. Hou, J. Mater. Sci. Technol. 44 (2020) 229-236.
DOI URL |
[31] | R. Razaq, N. Zhang, Y. Xin, Q. Li, J. Wang, Z. Zhang, EcoMat 2 (2020) e12020. |
[32] | X. Zhu, L. Wang, EcoMat 2 (2020), e12043. |
[33] |
J.Y. Seok, J. Lee, J.H. Park, M. Yang, Adv. Energy Mater. 9 (2019), 1803764.
DOI URL |
[34] |
L. Yao, W. Pan, J. Luo, X. Zhao, J. Cheng, H. Nishijima, Nano Lett. 18 (2018) 130-136.
DOI URL |
[35] |
X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, J. Gong, J. Am. Chem. Soc. 137 (2015) 8356-8359.
DOI URL |
[36] |
Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu, Z. Guo, Angew. Chem., Int. Ed. 55 (2016) 3408-3413.
DOI URL |
[37] |
S.M. Morris, P.F. Fulvio, M. Jaroniec, J. Am. Chem. Soc. 130 (2008) 15210-15216.
DOI URL |
[38] |
F. Wu, G. Yushin, Energy Environ. Sci. 10 (2017) 435-459.
DOI URL |
[39] |
S.H. Choi, Y.N. Ko, J.K. Lee, Y.C. Kang, Adv. Funct. Mater. 25 (2015) 1780-1788.
DOI URL |
[40] |
L. Zhang, X. Zhang, G. Tian, Q. Zhang, M. Knapp, H. Ehrenberg, G. Chen, Z. Shen, G. Yang, L. Gu, F. Du, Nat. Commun. 11 (2020) 3490.
DOI PMID |
[41] |
Y. Yao, Z. Wei, H. Wang, H. Huang, Y. Jiang, X. Wu, X. Yao, Z.S. Wu, Y. Yu, Adv. Energy Mater. 10 (2020), 1903698.
DOI URL |
[42] |
S. Yao, G. Zhang, X. Zhang, Y. Zhao, Z. Shi, J. Solid State Electrochem. 25 (2020) 267-278.
DOI URL |
[43] |
Z. Xue, L. Li, L. Cao, W. Zheng, W. Yang, X. Yu, J. Alloys Compd. 825 (2020), 153966.
DOI URL |
[1] | Guoguo Xi, Lei Zuo, Xuan Li, Yu Jin, Ran Li, Tao Zhang. In-situ constructed Ru-rich porous framework on NiFe-based ribbon for enhanced oxygen evolution reaction in alkaline solution [J]. J. Mater. Sci. Technol., 2021, 70(0): 197-204. |
[2] | Risheng Pei, Sandra Korte-Kerzel, Talal Al-Samman. Normal and abnormal grain growth in magnesium: Experimental observations and simulations [J]. J. Mater. Sci. Technol., 2020, 50(0): 257-270. |
[3] | P.G. Kubendran Amos, Ramanathan Perumal, Michael Selzer, Britta Nestler. Multiphase-field modelling of concurrent grain growth and coarsening in complex multicomponent systems [J]. J. Mater. Sci. Technol., 2020, 45(0): 215-229. |
[4] | Qinghang Wang, Bin Jiang, Aitao Tang, Jie Fu, Zhongtao Jiang, Haoran Sheng, Dingfei Zhang, Guangsheng Huang, Fusheng Pan. Unveiling annealing texture formation and static recrystallization kinetics of hot-rolled Mg-Al-Zn-Mn-Ca alloy [J]. J. Mater. Sci. Technol., 2020, 43(0): 104-118. |
[5] | G.W. Hu, L.C. Zeng, H. Du, X.W. Liu, Y. Wu, P. Gong, Z.T. Fan, Q. Hu, E.P. George. Tailoring grain growth and solid solution strengthening of single-phase CrCoNi medium-entropy alloys by solute selection [J]. J. Mater. Sci. Technol., 2020, 54(0): 196-205. |
[6] | Jiangguli Peng, Wenbin Liu, Jiangtao Zeng, Liaoying Zheng, Guorong Li, Anthony Rousseau, Alain Gibaud, Abdelhadi Kassiba. Large electromechanical strain at high temperatures of novel <001> textured BiFeGaO3-BaTiO3 based ceramics [J]. J. Mater. Sci. Technol., 2020, 48(0): 92-99. |
[7] | Ying-Jun Gao, Qian-Qian Deng, Zhe-yuan Liu, Zong-Ji Huang, Yi-Xuan Li, Zhi-Rong Luo. Modes of grain growth and mechanism of dislocation reaction under applied biaxial strain: Atomistic and continuum modeling [J]. J. Mater. Sci. Technol., 2020, 49(0): 236-250. |
[8] | Xintong Lian, Wenru Sun, Litao Chang, Fang Liu, Xin Xin. Influence of phosphorous on nucleation and growth of grains during solidification in a NiCrFe alloy [J]. J. Mater. Sci. Technol., 2019, 35(1): 134-141. |
[9] | G.B. Shan, Y.Z. Chen, M.M. Gong, H. Dong, B. Li, F. Liu. Influence of Al2O3 particle pinning on thermal stability of nanocrystalline Fe [J]. J. Mater. Sci. Technol., 2018, 34(4): 599-604. |
[10] | Kwak T.Y., Kim W.J.. Superplastic behavior of an ultrafine-grained Mg-13Zn-1.55Y alloy with a high volume fraction of icosahedral phases prepared by high-ratio differential speed rolling [J]. J. Mater. Sci. Technol., 2017, 33(9): 919-925. |
[11] | Zhou Dengshan, Geng Hongwei, Zeng Wei, Zhang Deliang, Kong Charlie, Munroe Paul. Suppressing Al2O3 nanoparticle coarsening and Cu nanograin growth of milled nanostructured Cu-5vol.%Al2O3 composite powder particles by doping with Ti [J]. J. Mater. Sci. Technol., 2017, 33(11): 1323-1328. |
[12] | Jin Zhaoyang,Yu Donghua,Wu Xintong,Yin Kai,Yan Kai. Drag Effects of Solute and Second Phase Distributions on the Grain Growth Kinetics of Pre-Extruded Mg-6Zn Alloy [J]. J. Mater. Sci. Technol., 2016, 32(12): 1260-1266. |
[13] | Xizhong Wang, Lei Guo, Hongbo Guo, Guohui Ma1, Shengkai Gong. Effects of Pressure during Preparation on the Grain Orientation of Ruddlesden–Popper Structured BaLa2Ti3O10 Ceramic [J]. J. Mater. Sci. Technol., 2014, 30(5): 455-458. |
[14] | Xiaoli Zhang, Yizhou Zhou, Tao Jin, Xiaofeng Sun, Lin Liu. Effect of Solidification Rate on Grain Structure Evolution During Directional Solidification of a Ni-based Superalloy [J]. J. Mater. Sci. Technol., 2013, 29(9): 879-883. |
[15] | Xiangbin Meng, Qi Lu, Jinguo Li, Tao Jin, Xiaofeng Sun, Jun Zhang, Zhongqiang Chen, Yanhui Wang, Zhuangqi Hu. Modes of Grain Selection in Spiral Selector during Directional Solidification of Nickel-base Superalloys [J]. J Mater Sci Technol, 2012, 28(3): 214-220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||