J. Mater. Sci. Technol. ›› 2021, Vol. 75: 118-125.DOI: 10.1016/j.jmst.2020.09.043
• Research Article • Previous Articles Next Articles
Chaobin Bia, Kaicheng Xub, Chaoquan Hua,*(), Ling Zhangc,**(
), Zhongbo Yanga, Shuaipeng Taoa, Weitao Zhenga,d,*(
)
Received:
2020-07-16
Revised:
2020-09-24
Accepted:
2020-09-27
Published:
2020-11-02
Online:
2020-11-02
Contact:
Chaoquan Hu,Ling Zhang,Weitao Zheng
About author:
wtzheng@jlu.edu.cn (W. Zheng).Chaobin Bi, Kaicheng Xu, Chaoquan Hu, Ling Zhang, Zhongbo Yang, Shuaipeng Tao, Weitao Zheng. Three distinct optical-switching states in phase-change materials containing impurities: From physical origin to material design[J]. J. Mater. Sci. Technol., 2021, 75: 118-125.
Fig. 1. (a-c) The (a) imaginary part, (b) real part of dielectric function, and (c) reflectance of amorphous, cubic and hexagonal Ge2Sb2Te5 (a-GST, c-GST and h-GST). (d-f) The (d) imaginary part, (e) real part of dielectric function, and (f) reflectance of amorphous, cubic and hexagonal nitrogen-doped Ge2Sb2Te5 (a-NGST, c-NGST and h-NGST).
Fig. 2. (a) The structure of active display coating (IPIA). (b) The simulated color of IPIA with a-GST thickness of 8 nm, 16 nm and 24 nm and the thickness of second layer ITO varying from 110 to 290 nm at a step of 20 nm. (c-e) Colors of IPIA based on (c) Ge2Sb2Te5, (d) nitrogen-doped Ge2Sb2Te5 and (e) LOGO using these colors, where the colors of IPIA with amorphous and hexagonal phase are chosen as background, and the colors of IPIA with cubic phase are set as symbol.
Fig. 3. (a) The structure of active absorber stacks (AMPA). (b-g) Simulated 2D map of p-polarized light absorption spectra of Ge2Sb2Te5 in (b) amorphous, (c) cubic, (d) hexagonal phases, and nitrogen-doped Ge2Sb2Te5 in (e) amorphous, (f) cubic, (g) hexagonal phases. (h-j) Simulated 2D map of absorptance change of (h) PTa-GST→c-GST, (i) PTc-GST→h-GST, (j) PTa-NGST→c-NGST and (k) PTc-NGST→h-NGST.
Fig. 4. (a, b) The contribution of the Tauc-Lorentz parameters of c-GST and c-NGST to the (a) real part and (b) imaginary part of dielectric function. The main factors that affect ΔεExp. are highlighted by a dotted frame. (c) Raman spectra of c-GST, c-NGST fitted by peak 1 (P1) and peak 2 (P2). (d) Dispersion of the absorption coefficients α in c-GST, c-NGST films, where inside is EU of c-GST, c-NGST films. (e) The absolute value of difference in ATL (ΔATL), IP2/IP1 (ΔIP2/IP1) and EU (ΔEU) after nitrogen is introduced into the amorphous, cubic and hexagonal phases. (f) The change of reflectance (ΔR) induced by the change of structural disorder (ΔATL).
Fig. 5. (a) The formation energy of nitrogen in cubic and hexagonal phases. (b, c) Electron density difference of (b) c-GST and c-NGST and (c) h-GST and h-NGST. (d) The full width at half maximum (FWHM) of the x-ray diffraction peak of (200) plane in the cubic phase and (103) plane in the hexagonal phase of Ge2Sb2Te5 and nitrogen-doped Ge2Sb2Te5 films. (e, f) HRTEM lattice image for (e) c-GST and (f) c-NGST.
Fig. 6. (a-c) The (a) imaginary part, (b) real part of dielectric function, and (c) reflectance of amorphous, cubic and hexagonal Ag-doped Ge2Sb2Te5 (a-AgGST, c-AgGST and h-AgGST). (d) The change of reflectance (ΔR) induced by the change of structural disorder (ΔATL). (e) The formation energy of Ag at Ge substitution sites (GeAg), Sb substitution sites (SbAg), Te substitution sites (TeAg), interstitial sites (iAg) and vacancy sites (vAg) in the cubic and hexagonal phases. (f) The formation energy of different atoms in the cubic phase.
[1] |
M. Wuttig, H. Bhaskaran, T. Taubner, Nat. Photonics 11 (2017) 465-476.
DOI URL |
[2] |
J.K. Behera, W. Wang, X. Zhou, S. Guan, W. Weikang, Y.A. Shengyuan, R.E. Simpson, J. Mater. Sci. Technol. 50 (2020) 171-177.
DOI URL |
[3] |
Y. Ke, C. Zhou, Y. Zhou, S. Wang, S.H. Chan, Y. Long, Adv. Funct. Mater. 28 (2018), 1800113.
DOI URL |
[4] |
M. Rudé, R.E. Simpson, R. Quidant, V. Pruneri, J. Renger, ACS Photonics 2 (2015) 669-674.
DOI URL |
[5] | Z. Cheng, C. Rios, N. Youngblood, C.D. Wright, W.H.P. Pernice, H. Bhaskaran, Adv. Mater. 30 (2018), e1802435. |
[6] |
C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, M. Li, ACS Photonics 6 (2018) 87-92.
DOI URL |
[7] |
Y. Yao, M.A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, F. Capasso, Nano Lett. 13 (2013) 1257-1264.
DOI URL |
[8] |
S.G.C. Carrillo, L. Trimby, Y.Y. Au, V.K. Nagareddy, G. Rodriguez-Hernandez, P. Hosseini, C. Ríos, H. Bhaskaran, C.D. Wright, Adv. Opt. Mater. 7 (2019), 1801782.
DOI URL |
[9] |
W. Dong, Y. Qiu, X. Zhou, A. Banas, K. Banas, M.B.H. Breese, T. Cao, R.E. Simpson, Adv. Opt. Mater. 6 (2018), 1701346.
DOI URL |
[10] |
X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, H. Giessen, Light Sci. Appl. 6 (2017), e17016.
DOI URL |
[11] |
K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig, Nat. Mater. 7 (2008) 653-658.
DOI URL |
[12] | M. Wuttig, V.L. Deringer, X. Gonze, C. Bichara, J.Y. Raty, Adv. Mater. 30 (2018), e1803777. |
[13] |
D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, M. Wuttig, Nat. Mater. 7 (2008) 972-977.
DOI URL |
[14] |
X. Zhou, L. Wu, Z. Song, Y. Cheng, F. Rao, K. Ren, S. Song, B. Liu, S. Feng, Acta Mater. 61 (2013) 7324-7333.
DOI URL |
[15] |
F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, E. Ma, Science 358 (2017) 1423-1427.
DOI URL |
[16] |
X. Zhou, J. Kalikka, X. Ji, L. Wu, Z. Song, R.E. Simpson, Adv. Mater. 28 (2016) 3007-3016.
DOI URL |
[17] |
M. Li, S. Magdassi, Y. Gao, Y. Long, Small 13 (2017), 1701147.
DOI URL |
[18] |
C. Yan, W. Kang, J. Wang, M. Cui, X. Wang, C.Y. Foo, K.J. Chee, P.S. Lee, ACS Nano 8 (2014) 316-322.
DOI URL |
[19] |
O. Salihoglu, H.B. Uzlu, O. Yakar, S. Aas, O. Balci, N. Kakenov, S. Balci, S. Olcum, S. Suzer, C. Kocabas, Nano Lett. 18 (2018) 4541-4548.
DOI URL |
[20] |
T. Zhang, S. Mei, Q. Wang, H. Liu, C.T. Lim, J. Teng, Nanoscale 9 (2017) 6895-6900.
DOI URL |
[21] |
X. Zhou, M. Xia, F. Rao, L. Wu, X. Li, Z. Song, S. Feng, H. Sun, ACS Appl. Mater. Interfaces 6 (2014) 14207-14214.
DOI URL |
[22] |
T.A. Miller, M. Rudé, V. Pruneri, S. Wall, Phys. Rev. B 94 (2016), 024301.
DOI URL |
[23] |
C. Rios, N. Youngblood, Z. Cheng, M. Le Gallo, W.H.P. Pernice, C.D. Wright, A. Sebastian, H. Bhaskaran, Sci. Adv. 5 (2019), eaau5759.
DOI URL |
[24] |
M. Rudé, V. Mkhitaryan, A.E. Cetin, T.A. Miller, A. Carrilero, S. Wall, F.J. G. de Abajo, H. Altug, V. Pruneri, Adv. Opt. Mater. 4 (2016) 1060-1066.
DOI URL |
[25] |
A. Tittl, A.K. Michel, M. Schaferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, H. Giessen, Adv. Mater. 27 (2015) 4597-4603.
DOI URL |
[26] |
C.Y. Hwang, G.H. Kim, J.H. Yang, C.S. Hwang, S.M. Cho, W.J. Lee, J.E. Pi, J.H. Choi, K. Choi, H.O. Kim, S.Y. Lee, Y.H. Kim, Nanoscale 10 (2018) 21648-21655.
DOI URL |
[27] |
Q. Wang, E.T.F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, N.I. Zheludev, Nat. Photonics 10 (2015) 60-65.
DOI URL |
[28] |
P. Li, X. Yang, T.W. Mass, J. Hanss, M. Lewin, A.K. Michel, M. Wuttig, T. Taubner, Nat. Mater. 15 (2016) 870-875.
DOI URL |
[29] |
Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, M. Qiu, Light Sci. Appl. 7 (2018) 26.
DOI URL |
[30] |
K.K. Du, Q. Li, Y.B. Lyu, J.C. Ding, Y. Lu, Z.Y. Cheng, M. Qiu, Light Sci. Appl. 6 (2017), e16194.
DOI URL |
[31] |
P. Hosseini, C.D. Wright, H. Bhaskaran, Nature 511 (2014) 206-211.
DOI PMID |
[32] |
C. Rios, P. Hosseini, R.A. Taylor, H. Bhaskaran, Adv. Mater. 28 (2016) 4720-4726.
DOI URL |
[33] | K.V. Sreekanth, S. Han, R. Singh, Adv. Mater. 30 (2018), e1706696. |
[34] |
J.-W. Park, S.H. Eom, H. Lee, J.L.F. Da Silva, Y.-S. Kang, T.-Y. Lee, Y.H. Khang, Phys. Rev. B 80 (2009), 115209.
DOI URL |
[35] |
J.L.F. Da Silva, A. Walsh, H. Lee, Phys. Rev. B 78 (2008), 224111.
DOI URL |
[36] |
B. Gholipour, A. Karvounis, J. Yin, C. Soci, K.F. MacDonald, N.I. Zheludev, NPG Asia Mater. 10 (2018) 533-539.
DOI URL |
[37] |
S.G. Carrillo, A.M. Alexeev, Y.Y. Au, C.D. Wright, Opt. Express 26 (2018) 25567-25581.
DOI URL |
[38] |
A.K.U. Michel, M. Wuttig, T. Taubner, Adv. Opt. Mater. 5 (2017), 1700261.
DOI URL |
[39] |
N. Farmakidis, N. Youngblood, X. Li, J. Tan, J.L. Swett, Z. Cheng, C.D. Wright, W.H.P. Pernice, H. Bhaskaran, Sci. Adv. 5 (2019), eaaw2687.
DOI URL |
[40] |
K.V. Shportko, Sci. Rep. 9 (2019) 6030.
DOI URL |
[41] |
P. Jost, H. Volker, A. Poitz, C. Poltorak, P. Zalden, T. Schäfer, F.R.L. Lange, R.M. Schmidt, B. Holländer, M.R. Wirtssohn, M. Wuttig, Adv. Funct. Mater. 25 (2015) 6399-6406.
DOI URL |
[42] |
A.L. Mario Behrens, Ulrich Roß, Jan Griebel, Philipp Schumacher, Jürgen W. Gerlach, Bernd Rauschenbach, CrystEngComm 20 (2018) 3688.
DOI URL |
[43] |
M. Kalyva, J. Orava, A. Siokou, M. Pavlista, T. Wagner, S.N. Yannopoulos, Adv. Funct. Mater. 23 (2013) 2052-2059.
DOI URL |
[44] |
M. Hafermann, P. Schöppe, J. Rensberg, C. Ronning, ACS Photonics 5 (2018) 5103-5109.
DOI URL |
[45] |
M. Xu, W. Zhang, R. Mazzarello, M. Wuttig, Adv. Sci. 2 (2015), 1500117.
DOI URL |
[46] |
Q. Li, K.C. Xu, X.Y. Wang, H.H. Huang, L. Ma, C.B. Bi, Z.B. Yang, Y.K. Li, Y. Zhao, S.H. Fan, J. Liu, C.Q. Hu, J. Mater. Chem. C 7 (2019) 4132-4142.
DOI URL |
[47] |
P. Nrmec, J. Prikryl, V. Nazabal, M. Frumar, J. Appl. Phys. 109 (2011), 073520.
DOI URL |
[48] |
T.A. Konig, P.A. Ledin, J. Kerszulis, M.A. Mahmoud, M.A. El-Sayed, J.R. Reynolds, V.V. Tsukruk, ACS Nano 8 (2014) 6182-6192.
DOI URL |
[49] |
F. Yang, T. Chen, M. Wang, B. Yan, L. Wan, D. Ke, Y. Dai, AIP Adv. 8 (2018), 065223.
DOI URL |
[50] |
A.M.P. Nemec, V. Nazabal, M. Pavlišta, J. Prikryl, M. Frumar, J. Appl. Phys. 106 (2009), 103509.
DOI URL |
[51] |
S. Guo, Z. Hu, X. Ji, T. Huang, X. Zhang, L. Wu, Z. Song, J. Chu, RSC Adv. 4 (2014) 57218-57222.
DOI URL |
[52] |
B. Liu, Z. Song, T. Zhang, J. Xia, S. Feng, B. Chen, Thin Solid Films 478 (2005) 49-55.
DOI URL |
[53] |
T.T.G.D. Cody, B. Abeles, B. Brooks, Y. Goldstein, Phys. Rev. Lett. 47 (1981) 1480-1483.
DOI URL |
[54] |
S.-J. Kim, J. Lee, S.-C. Lee, C. Park, C.S. Hwang, J.-H. Choi, Phys. Status Solidi RRL 6 (2012) 108-110.
DOI URL |
[55] |
H. Odhiambo, G. Amolo, N. Makau, K. Kiptiemoi, H. Othieno, Int. J. Nanosci. 17 (2018), 1850009.
DOI URL |
[56] |
J.-J. Wang, J. Wang, H. Du, L. Lu, P.C. Schmitz, J. Reindl, A.M. Mio, C.-L. Jia, E. Ma, R. Mazzarello, M. Wuttig, W. Zhang, Chem. Mater. 30 (2018) 4770-4777.
DOI URL |
[57] |
A.D. Buckingham, P.W. Fowler, Jeremy M. Hutson, Chem. Rev. 88 (1988) 963-988.
DOI URL |
[58] |
J.-J. Kim, K. Kobayashi, E. Ikenaga, M. Kobata, S. Ueda, T. Matsunaga, K. Kifune, R. Kojima, N. Yamada, Phys. Rev. B 76 (2007), 115124.
DOI URL |
[59] |
B. Huang, J. Robertson, Phys. Rev. B 81 (2010), 081204.
DOI URL |
[60] |
K.-H. Kim, J.-C. Park, J.-H. Lee, J.-G. Chung, S. Heo, S.-J. Choi, Jpn. J. Appl. Phys. 49 (2010), 101201.
DOI URL |
[61] |
Z.S. Bo Liu, Songlin Feng, Bomy Chen, Mater. Sci. Eng. B 119 (2005) 125-130.
DOI URL |
[62] |
C.-T. Lie, P.-C. Kuo, W.-C. Hsu, T.-H. Wu, P.-W. Chen, S.-C. Chen, Jpn. J. Appl. Phys. 42 (2003) 1026-1028.
DOI URL |
[63] |
K. Wang, D. Wamwangi, S. Ziegler, C. Steimer, M. Wuttig, J. Appl. Phys. 96 (2004) 5557-5562.
DOI URL |
[64] |
J. Zhou, Z. Sun, L. Xu, R. Ahuja, Solid State Commun. 148 (2008) 113-116.
DOI URL |
[65] |
T.-J. Park, S.-Y. Choi, M.-J. Kang, Thin Solid Films 515 (2007) 5049-5053.
DOI URL |
[1] | Yurong Liu, Yongpeng Xia, Kang An, Chaowei Huanga, Weiwei Cui, Sheng Wei, Rong Ji, Fen Xu, Huanzhi Zhang, Lixian Sun. Fabrication and characterization of novel meso-porous carbon/n-octadecane as form-stable phase change materials for enhancement of phase-change behavior [J]. J. Mater. Sci. Technol., 2019, 35(5): 939-945. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||