J. Mater. Sci. Technol. ›› 2021, Vol. 70: 197-204.DOI: 10.1016/j.jmst.2020.08.039
• Research Article • Previous Articles Next Articles
Guoguo Xia, Lei Zuob, Xuan Lia, Yu Jinc, Ran Lia,**(), Tao Zhanga,d,*(
)
Received:
2020-05-13
Revised:
2020-06-06
Accepted:
2020-06-06
Published:
2021-04-20
Online:
2021-04-30
Contact:
Ran Li,Tao Zhang
About author:
** E-mail: liran@buaa.edu.cn (R. Li),Guoguo Xi, Lei Zuo, Xuan Li, Yu Jin, Ran Li, Tao Zhang. In-situ constructed Ru-rich porous framework on NiFe-based ribbon for enhanced oxygen evolution reaction in alkaline solution[J]. J. Mater. Sci. Technol., 2021, 70: 197-204.
Scheme 1. Schematic illustration of the in-situ construction of Ru-rich porous framework on NiFe-based ribbon used for the OER in alkaline electrolyte.
Fig. 1. (a, b) SEM images of NP-Ru3 under different magnifications. The pore size and ligament size of NP-Ru3 are also inserted in the images of (a) and (b), respectively. (c) XRD patterns and (d) EDS analysis of melt-spun AN-Ru3 ribbon before and after etching. The insert of Fig. 1(d) is the corresponding quantitative ananlysis.
Fig. 2. (a) The cross-section TEM image of NP-Ru3, (b) the SAED of the solid substrate (around 200 nm), (c) the SAED of surface porous region (around 200 nm), (d-f) the local HRTEM images in surface porous region at different magnifications, (g) STEM images and elemental mapping of NP-Ru3.
Fig. 4. (a) LSV curves, (b) Tafel plots, and (c) Double-layer capacitance (Cdl) of NP-Ru3, NP-Ru0, AN-Ru0, AN-Ru3, and RuO2 in 1 M KOH electrolyte at 298 K. (d) ?, Tafel slope, and ECSA of NP-Ru0.5, NP-Ru1, NP-Ru3, and NP-Ru5 in 1 M KOH electrolyte at 298 K. (e) Nyquist plot of NP-Ru3 collected at the overpotential of 300 mV. The inset of panel (e) illustrates the equivalent circuit model and generated circuit parameter values for EIS data fitting. (f) The polarization curves of NP-Ru3 before and after 5000 CV scans. The insert shows the stability of NP-Ru3 up to 15 h in 1 M KOH electrolyte at oxygen evolution rate of 10 mA cm-2, respectively.
Catalyst | Substrate | Electrolyte | η/ mV (10 mA cm-2) | Tafel Slope (mV dec-1) | Ref. |
---|---|---|---|---|---|
NP-Ru3 | - | 1 M KOH | 245 | 15 | This work |
AN-Ru3 | - | 1 M KOH | 326 | 47 | |
Ni1.25Ru0.75P | GCE | 1 M KOH | 340 | - | [ |
RuO2/Co3O4 | GCE | 1 M KOH | 305 | 69 | [ |
Ni3Co3@Ru HNS | RRDE | 1 M KOH | 272 | 56 | [ |
Etched bulk NiFeP | - | 1 M NaOH | 219 | 31-38 | [ |
NP-FeNiCo-MGs | GCE | 1 M KOH | 274 | 37.4 | [ |
3D NiFeLDH HMS | - | 1 M KOH | 290 | 51 | [ |
NiFeS | Ni foam | 1 M KOH | 286 | 56.3 | [ |
a-NiFe NS/IF | - | 1 M KOH | 211 | 31.8 | [ |
NiFe-LDH nanoplatelet arrays | Ni foam | 1 M KOH | 224 | 52.8 | [ |
NiFe-LDH nanosheets | GCE | 1 M KOH | 230 | 42 | [ |
NiFe-LDH hollow microsphere | GCE | 1 M KOH | 239 | 53 | [ |
Table 1 Comparison of electrocatalytic OER performance for our catalysts and other reported Ru-including materials and NiFe-based electrocatalysts.
Catalyst | Substrate | Electrolyte | η/ mV (10 mA cm-2) | Tafel Slope (mV dec-1) | Ref. |
---|---|---|---|---|---|
NP-Ru3 | - | 1 M KOH | 245 | 15 | This work |
AN-Ru3 | - | 1 M KOH | 326 | 47 | |
Ni1.25Ru0.75P | GCE | 1 M KOH | 340 | - | [ |
RuO2/Co3O4 | GCE | 1 M KOH | 305 | 69 | [ |
Ni3Co3@Ru HNS | RRDE | 1 M KOH | 272 | 56 | [ |
Etched bulk NiFeP | - | 1 M NaOH | 219 | 31-38 | [ |
NP-FeNiCo-MGs | GCE | 1 M KOH | 274 | 37.4 | [ |
3D NiFeLDH HMS | - | 1 M KOH | 290 | 51 | [ |
NiFeS | Ni foam | 1 M KOH | 286 | 56.3 | [ |
a-NiFe NS/IF | - | 1 M KOH | 211 | 31.8 | [ |
NiFe-LDH nanoplatelet arrays | Ni foam | 1 M KOH | 224 | 52.8 | [ |
NiFe-LDH nanosheets | GCE | 1 M KOH | 230 | 42 | [ |
NiFe-LDH hollow microsphere | GCE | 1 M KOH | 239 | 53 | [ |
[1] |
S. Chu, A. Majumdar, Nature, 488(2012), pp. 294-303.
DOI URL |
[2] |
M.D. Symes, L. Cronin, Nat. Chem., 5(2013), pp. 403-409.
DOI URL |
[3] |
T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Chem. Rev., 110(2010), pp. 6474-6502.
DOI URL |
[4] |
M.S. Dresselhaus, I.L. Thomas, Nature, 414(2001), pp. 332-337.
DOI URL |
[5] |
B.M. Hunter, H.B. Gray, A.M. Muller, Chem. Rev., 116(2016), pp. 14120-14136.
DOI URL |
[6] | J.W. Ren, M. Antonietti, T.P. Fellinger, Adv. Energy Mater., 5 ( 2015), Article 1401660. |
[7] | Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, J. Phys. Chem. Lett., 3(2012), pp. 399-404. |
[8] |
P.A. DeSario, C.N. Chervin, E.S. Nelson, M.B. Sassin, D.R. Rolison, ACS Appl. Mater. Inter., 9(2017), pp. 2387-2395.
DOI URL |
[9] |
M.S. Burke, S.H. Zou, L.J. Enman, J.E. Kellon, C.A. Gabor, E. Pledger, S.W. Boettcher, J. Phys. Chem. Lett., 6(2015), pp. 3737-3742.
DOI URL |
[10] |
C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc., 135(2013), pp. 16977-16987.
DOI URL |
[11] |
M. Gong, H.J. Dai, Nano Res., 8(2015), pp. 23-39.
DOI URL |
[12] |
L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, J. Am. Chem. Soc., 136(2014), pp. 6744-6753.
DOI URL |
[13] |
D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai, A.M. Wise, M.J. Cheng, D. Sokaras, T.C. Weng, R. Alonso-Mori, R.C. Davis, J.R. Bargar, J.K. Norskov, A. Nilsson, A.T. Bell, J. Am. Chem. Soc., 137(2015), pp. 1305-1313.
DOI URL |
[14] |
A.M. Smith, L. Trotochaud, M.S. Burke, S.W. Boettcher, Chem. Commun., 51(2015), pp. 5261-5263.
DOI URL |
[15] |
G. Liu, D.Y. He, R. Yao, Y. Zhao, J.P. Li, Nano Res., 11(2018), pp. 1664-1675.
DOI URL |
[16] |
K.L. Yan, X. Shang, Z. Li, B. Dong, X. Li, W.K. Gao, Appl. Surf. Sci., 416(2017), pp. 371-378.
DOI URL |
[17] |
W. Ma, R.Z. Ma, C.X. Wang, J.B. Liang, X.H. Liu, K.C. Zhou, T. Sasaki, ACS Nano, 9(2015), pp. 1977-1984.
DOI URL |
[18] |
U.Y. Qazi, C.Z. Yuan, N. Ullah, Y.F. Jiang, M. Imran, A. Zeb, S.J. Zhao, R. Javaid, A.W. Xu, ACS Appl. Mater. Inter., 9(2017), pp. 28627-28634.
DOI URL |
[19] |
X. Long, J.K. Li, S. Xiao, K.Y. Yan, Z.L. Wang, H.N. Chen, S.H. Yang, Angew. Chem., 126(2014), pp. 7714-7718.
DOI URL |
[20] |
E. Detsi, J.B. Cook, B.K. Lesel, C.L. Turner, Y.L. Liang, S. Robbennolt, S.H. Tolbert, Energ. Environ. Sci., 9(2016), pp. 540-549.
DOI URL |
[21] |
J. Wang, H.X. Zhong, Y.L. Qin, X.B. Zhang, Angew. Chem., 125(2013), pp. 5356-5361.
DOI URL |
[22] |
W.X. Zhu, L.Z. Liu, Z.H. Yue, W.T. Zhang, X.Y. Yue, J. Wang, S.X. Yu, L. Wang, J.L. Wang, ACS Appl. Mater. Inter., 9(2017), pp. 19807-19814.
DOI URL |
[23] |
D.R. Liyanage, D. Li, Q.B. Cheek, H. Baydoun, S.L. Brock, J. Mater. Chem. A, 5(2017), pp. 17609-17618.
DOI URL |
[24] |
H.Z. Liu, G.L. Xia, R.R. Zhang, P. Jiang, J.T. Chen, Q.W. Chen, RSC Adv., 7(2017), pp. 3686-3694.
DOI URL |
[25] | H. Hwang, T. Kwon, H.Y. Kim, J. Park, A. Oh, B. Kim, H. Baik, S.H. Joo, K. Lee, Small, 14(2018), Article 1702353. |
[26] | F. Hu, S.L. Zhu, S.M. Chen, Y. Li, L. Ma, T.P. Wu, Y. Zhang, C.M. Wang, C.C. Liu, X.J. Yang, L. Song, X.W. Yang, Y.J. Xiong, Adv. Mater., 29(2017), Article 1606570. |
[27] |
T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, J. Am. Chem. Soc., 136(2014), pp. 13925-13931.
DOI URL |
[28] |
Y.W. Tan, P. Liu, L.Y. Chen, W.T. Cong, Y. Ito, J.H. Han, X.W. Guo, Z. Tang, T. Fujita, A. Hirata, M.W. Chen, Adv. Mater., 26(2014), pp. 8023-8028.
DOI URL |
[29] | R.Q. Yao, H. Shi, W.B. Wan, Z. Wen, X.Y. Lang, Q. Jiang, Adv. Mater., 32(2020), Article 1907214. |
[30] |
Y.C. Hu, Y.Z. Wang, R. Su, C.R. Cao, F. Li, C.W. Sun, Y. Yang, P.F. Guan, D.W. Ding, Z.L. Wang, W.H. Wang, Adv. Mater., 28(2016), pp. 10293-10297.
DOI URL |
[31] | Y.W. Tan, F. Zhu, H. Wang, Y. Tian, A. Hirata, T. Fujita, M.W. Chen, Adv. Mater. Interfaces, 4 (2017), Article 1601086. |
[32] |
F.B. Zhang, J.L. Wu, W. Jiang, Q.Z. Hu, B. Zhang, ACS Appl. Mater. Interfaces, 9(2017), pp. 31340-31344.
DOI URL |
[33] | R. Li, X.J. Liu, R.Y. Wu, J. Wang, Z.B. Li, K.C. Chan, H. Wang, Y. Wu, Z.P. Lu, Adv. Mater. (2019), Article 1904989. |
[34] |
Y. Jin, R. Li, H.J. Xu, X.B. Chen, T. Zhang, Scripta Mater., 133(2017), pp. 14-18.
DOI URL |
[35] |
R. Li, Y. Jin, G.G. Xi, Z.A. Li, X.B. Chen, T. Zhang, J. Alloy. Compd., 852(2021), p. 156876.
DOI URL |
[36] |
Y.X. Geng, Y.M. Wang, J.B. Qiang, G.F. Zhang, C. Dong, P. Haussler, J. Non-cryst. Solids, 432(2016), pp. 453-458.
DOI URL |
[37] |
R. Hasegawa, R. Ray, J. Appl. Phys., 49(1978), pp. 4174-4179.
DOI URL |
[38] |
B. Zhang, X.L. Zheng, O. Voznyy, R. Comin, M. Bajdich, M.G. Melchor, L.L. Han, J.X. Xu, M. Liu, L.R. Zheng, F.P.G.D. Arquer, C.T. Dinh, F.J. Fan, M.J. Yuan, E. Yassitepe, N. Chen, T. Regier, P.F. Liu, Y.H. Li, P.D. Luna, A. Janmohamed, H.L. Xin, H.G. Yang, A. Vojvodic, E.H. Sargent, Science, 352(2016), pp. 333-337.
DOI URL |
[39] |
E. Lopatina, I. Soldatov, V. Budinsky, M. Marsilius, L. Schultz, G. Herzer, R. Schafer, Acta Mater., 96(2015), pp. 10-17.
DOI URL |
[40] |
S. Niyomsoan, P. Gargarella, N. Chomsaeng, P. Termsuksawad, U. Kiihn, J. Eckert, Mater. Res., 18(2015), pp. 120-126.
DOI URL |
[41] |
A. Takeuchi, A. Inoue, Mater. Trans., 46(2005), pp. 2817-2829.
DOI URL |
[42] |
M. Ammam, E.B. Easton, J. Power Sources, 215(2012), pp. 188-198.
DOI URL |
[43] |
X.T. Chen, C.H. Si, Y.L. Gao, J. Frenzel, J.Z. Sun, G. Eggeler, Z.H. Zhang, J. Power Sources, 273(2015), pp. 324-332.
DOI URL |
[44] |
J.D. Ayers, V.G. Harris, J.A. Sprague, W.T. Elam, H.N. Jones, Acta Mater., 46(1998), pp. 1861-1874.
DOI URL |
[45] |
Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol., 44(2020), pp. 171-190.
DOI URL |
[46] |
J.S. Yu, Y. Ding, C.X. Xu, A. Inoue, T. Sakurai, M.W. Chen, Chem. Mater., 20(2008), pp. 4548-4550.
DOI URL |
[47] |
X. Gouin, P. Grange, L. Bois, P. L’haridon, Y. Laurent, J. Alloy Compd., 224(1995), pp. 22-28.
DOI URL |
[48] |
H.H. Zhong, T.Y. Liu, S.W. Zhang, D.Q. Li, P.G. Tang, N.A. Vante, Y.J. Feng, J. Energy Chem., 33(2019), pp. 130-137.
DOI URL |
[49] | B.Q. Li, S.Y. Zhang, C. Tang, X.Y. Cui, Q. Zhang, Small, 13(2017), Article 1700610. |
[50] |
X. Yang, Q.Q. Chen, C.J. Wang, C.C. Hou, Y. Chen, J. Energy Chem., 35(2019), pp. 197-203.
DOI URL |
[51] |
Z. Li, M. Shao, H. An, Z. Wang, S. Xu, M. Wei, D.G. Evans, X. Duan, Chem. Sci., 6(2015), p. 6624.
DOI URL |
[52] |
W. Ma, R. Ma, C. Wang, J. Liang, X. Liu, K. Zhou, T. Sasaki, ACS Nano, 9(2015), p. 1977.
DOI URL |
[53] |
C. Zhang, M. Shao, L. Zhou, Z. Li, K. Xiao, M. Wei, ACS Appl. Mater. Interf., 8(2016), p. 33697.
DOI URL |
[54] | G.B. Chen, T. Wang, J. Zhang, P. Liu, H.J. Sun, X.D. Zhuang, M.W. Chen, X.L. Feng, Adv. Mater. (2018), Article 1706279. |
[55] |
J.O.M. Bockris, J. Chem. Phys., 24(1956), pp. 817-827.
DOI URL |
[56] |
N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Chem. Soc. Rev., 46(2017), pp. 337-365.
DOI URL |
[1] | Guangrong Li, Chunhua Tang, Guanjun Yang. Dynamic-stiffening-induced aggravated cracking behavior driven by metal-substrate-constraint in a coating/substrate system [J]. J. Mater. Sci. Technol., 2021, 65(0): 154-163. |
[2] | Kai Huang, Yuyang Xu, Yanpeng Song, Ruyue Wang, Hehe Wei, Yuanzheng Long, Ming Lei, Haolin Tang, Jiangang Guo, Hui Wu. NiPS3 quantum sheets modified nitrogen-doped mesoporous carbon with boosted bifunctional oxygen electrocatalytic performance [J]. J. Mater. Sci. Technol., 2021, 65(0): 1-6. |
[3] | Junwei Chang, Zhenyu Wang, En-hou Han, Xinlei Liang, Gang Wang, Zuyao Yi, Na Li. Corrosion resistance of tannic acid, d-limonene and nano-ZrO2 modified epoxy coatings in acid corrosion environments [J]. J. Mater. Sci. Technol., 2021, 65(0): 137-150. |
[4] | Bo Gao, Rong Hu, Zhiyi Pan, Xuefei Chen, Yi Liu, Lirong Xiao, Yang Cao, Yusheng Li, Qingquan Lai, Hao Zhou. Strengthening and ductilization of laminate dual-phase steels with high martensite content [J]. J. Mater. Sci. Technol., 2021, 65(0): 29-37. |
[5] | Yunsong Niu, Lingling Xing, Feng Yang, Huawei Li, Minghui Chen, Shenglong Zhu, Fuhui Wang. Phase structure of sputtered Ta coating and its ablation behavior by laser pulse heating (LPH) [J]. J. Mater. Sci. Technol., 2021, 65(0): 7-17. |
[6] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[7] | Dan Liu, Daoxin Liu, Mario Guagliano, Xingchen Xu, Kaifa Fan, Sara Bagherifard. Contribution of ultrasonic surface rolling process to the fatigue properties of TB8 alloy with body-centered cubic structure [J]. J. Mater. Sci. Technol., 2021, 61(0): 63-74. |
[8] | Zhuwei Lv, Chenchen Yuan, Haibo Ke, Baolong Shen. Defects activation in CoFe-based metallic glasses during creep deformation [J]. J. Mater. Sci. Technol., 2021, 69(0): 42-47. |
[9] | Xinyue Tang, Junchao Wang, Jing Li, Xinglai Zhang, Peiqing La, Xin Jiang, Baodan Liu. In-situ growth of large-area monolithic Fe2O3/TiO2 catalysts on flexible Ti mesh for CO oxidation [J]. J. Mater. Sci. Technol., 2021, 69(0): 119-128. |
[10] | Yeshun Huang, Xinguang Wang, Chuanyong Cui, Zihao Tan, Jinguo Li, Yanhong Yang, Jinlai Liu, Yizhou Zhou, Xiaofeng Sun. Effect of thermal exposure on the microstructure and creep properties of a fourth-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 180-187. |
[11] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 69(0): 200-211. |
[12] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
[13] | Alexander Tkach, Olena Okhay. Comment on “Hole-pinned defect-dipoles induced colossal permittivity in Bi doped SrTiO3 ceramics with Sr deficiency” [J]. J. Mater. Sci. Technol., 2021, 65(0): 151-153. |
[14] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[15] | Durga Bhakta Pokharel, Liping Wu, Junhua Dong, Xin Wei, Ini-Ibehe Nabuk Etim, Dhruba Babu Subedi, Aniefiok Joseph Umoh, Wei Ke. Effect of D-fructose on the in-vitro corrosion behavior of AZ31 magnesium alloy in simulated body fluid [J]. J. Mater. Sci. Technol., 2021, 66(0): 202-212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||