J. Mater. Sci. Technol. ›› 2021, Vol. 70: 205-213.DOI: 10.1016/j.jmst.2020.08.049
• Research Article • Previous Articles Next Articles
Yuan-Yun Zhaoa,b, Feng Qiand, Chengliang Zhaoa, Chunxiao Xiea, Jianguo Wanga, Chuntao Changa,*(), Yanjun Lib,*(
), Lai-Chang Zhangc,*(
)
Received:
2020-06-18
Revised:
2020-07-26
Accepted:
2020-07-29
Published:
2021-04-20
Online:
2021-04-15
Contact:
Chuntao Chang,Yanjun Li,Lai-Chang Zhang
About author:
* E-mail: changct@dgut.edu.cn (C. Chang),Yuan-Yun Zhao, Feng Qian, Chengliang Zhao, Chunxiao Xie, Jianguo Wang, Chuntao Chang, Yanjun Li, Lai-Chang Zhang. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses[J]. J. Mater. Sci. Technol., 2021, 70: 205-213.
Fig. 1. Synthesis of Cu and Cu-Ag UF-NPFs via dealloying Mg-Cu(Ag)-Gd metallic glass ribbons. (a) Photographs of a typical synthetic procedure for Cu UF-NPFs by dealloying thick Mg61Cu28Gd11 metallic glass ribbon. (b) Photograph of a capsule shell-like Cu3Ag UF-NPF by dealloying Mg61Cu21Ag7Gd11 metallic glass ribbon. (c) Photograph showing that the remaining Mg61Cu21Ag7Gd11 metallic glass ribbon can be removed by tearing off the capsule shell-like Cu3Ag UF-NPF. (d-f) SEM images of the as-prepared Cu, Cu3Ag, and CuAg UF-NPFs, respectively. (g-i) High-magnification SEM images of the as-prepared Cu, Cu3Ag, and CuAg UF-NPFs, respectively.
Fig. 2. XRD patterns of the Mg-Cu(Ag)-Gd metallic glass precursors and the as-prepared Cu, Cu3Ag, and CuAg UF-NPFs. The green and red vertical lines represent the reference diffraction peaks of pure Ag and Cu, respectively.
Fig. 3. TEM images of the ligaments in Cu (a), Cu3Ag (b), and CuAg UF-NPFs (c). High-magnification TEM images of the ligaments in Cu (d), Cu3Ag (e), and CuAg UF-NPFs (f). SAED patterns of the Cu (g), Cu3Ag (h), and CuAg UF-NPFs (i).
Fig. 4. STEM images, in a mapping mode, of typical ligaments in a Cu3Ag UF-NPF: (a) TEM image, (b) high-angle annular dark field image (HAADF), (c) Cu distribution; and (d) Ag distribution. (e) High-magnification TEM image of the marked region in (a). (f, g) High-magnification TEM images in region A and B, respectively. STEM images of typical ligaments in a CuAg UF-NPF: (h) TEM image, (i) HAADF image, (j) Cu distribution, and (k) Ag distribution.
Fig. 5. Morphology of the sequential intermediates sampled at different reaction times. (a) SEM image of the outer surface of the Mg61Cu28Gd11 metallic glass precursor ribbon. (b) DSC curves of the Mg-Cu(Ag)-Gd metallic glass precursor ribbons. (c) SEM image of the rudimentary nanoporous Cu layer (layer I) and the local “melted” layer (layer II) at 3 min. (d) High-magnification SEM image of the local “melted” layer at 3 min. (e) SEM image of the Cu-rich UF-NPF at 6 min. (f) High-magnification SEM image of the Cu-rich UF-NPF at 6 min.
Fig. 6. Schematic illustration of the formation mechanism of the metallic UF-NPFs. (a) Formation of rudimentary nanoporous Cu(Ag) on the outer surface of the metallic glass precursor ribbon. (b) Glass transition (T>Tg) occurs within a layer between the rudimentary nanoporous Cu(Ag) and the metallic glass ribbon core. (c) Separation of the Cu(Ag)-rich UF-NPF from the supercooled liquid layer due to the bulging effect of in situ-generated H2 on the solid/liquid interface. (d) Self-peeling of the Cu(Ag) UF-NPF from the outer surface of the ribbon.
Fig. 7. Raman spectra of Cu and Cu-Ag UF-NPFs at different concentrations of R6G. (a) Raman spectra of the Cu UF-NPF at different concentrations of R6G, together with the Raman spectra of a 10-4 M R6G ethanol solution on a glass substrate; (b) Raman spectra of the Cu3Ag and CuAg UF-NPFs at different concentrations of R6G.
SERS substrates | Prepared method | Detection limit of R6G | Refs. |
---|---|---|---|
Cu films | Magnetron sputtering | 10-6 M | [ |
Cu nanodot films | Electrodeposition | 10-4 M | [ |
Nanoporous Cu | Dealloying | 10-5 M | [ |
Nanoporous Cu foils | Hydrothermal method | 10-6 M | [ |
Nanoporous Cu | Dealloying | 10-5 M | [ |
Ag@Nanoporous Cu | Dealloying + displacement reaction | 10-8 M | [ |
Cu-Ag nanowires | Displacement reaction | 10-8 M | [ |
Cu-Ag films | Vacuum thermal evaporation | 10-9 M | [ |
Nanoporous Cu-Ag | Dealloying | 10-11 M | [ |
Nanoporous Au | Dealloying | 10-10 M | [ |
Cu UF-NPFs | Dealloying | 10-6 M | This work |
Cu3Ag UF-NPFs | Dealloying | 10-8 M | This work |
CuAg UF-NPFs | Dealloying | 10-11 M | This work |
Table 1 Comparison of the detection limit of R6G between the proposed Cu, Cu3Ag, CuAg UF-NPFs, and previously reported Cu-based SERS substrates.
SERS substrates | Prepared method | Detection limit of R6G | Refs. |
---|---|---|---|
Cu films | Magnetron sputtering | 10-6 M | [ |
Cu nanodot films | Electrodeposition | 10-4 M | [ |
Nanoporous Cu | Dealloying | 10-5 M | [ |
Nanoporous Cu foils | Hydrothermal method | 10-6 M | [ |
Nanoporous Cu | Dealloying | 10-5 M | [ |
Ag@Nanoporous Cu | Dealloying + displacement reaction | 10-8 M | [ |
Cu-Ag nanowires | Displacement reaction | 10-8 M | [ |
Cu-Ag films | Vacuum thermal evaporation | 10-9 M | [ |
Nanoporous Cu-Ag | Dealloying | 10-11 M | [ |
Nanoporous Au | Dealloying | 10-10 M | [ |
Cu UF-NPFs | Dealloying | 10-6 M | This work |
Cu3Ag UF-NPFs | Dealloying | 10-8 M | This work |
CuAg UF-NPFs | Dealloying | 10-11 M | This work |
[1] |
A. Huang, Y. He, Y. Zhou, Y. Zhou, Y. Yang, J. Zhang, L. Luo, Q. Mao, D. Hou, J. Yang, J. Mater. Sci., 54(2019), pp. 949-973.
DOI URL |
[2] |
J. Zhang, C.M. Li, Chem. Soc. Rev., 41(2012), pp. 7016-7031.
DOI URL |
[3] |
J. Kang, L. Chen, Y. Hou, C. Li, T. Fujita, X. Lang, A. Hirata, M. Chen, Adv. Energy Mater., 3(2013), pp. 857-863.
DOI URL |
[4] |
L.-Y. Chen, J.-S. Yu, T. Fujita, M.-W. Chen, Adv. Funct. Mater., 19(2009), pp. 1221-1226.
DOI URL |
[5] |
J. Wang, X. Liu, R. Li, Z. Li, X. Wang, H. Wang, Y. Wu, S. Jiang, Z. Lu, Inorg. Chem. Front., 7(2020), pp. 1127-1139.
DOI URL |
[6] |
L.Y. Chen, L. Zhang, T. Fujita, M.W. Chen, J. Phys. Chem. C, 113(2009), pp. 14195-14199.
DOI URL |
[7] |
J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature, 410(2001), pp. 450-453.
DOI URL |
[8] | T. Juarez, J. Biener, J. Weissmüller, A.M. Hodge, Adv. Eng. Mater., 19(2017), Article 1700389. |
[9] |
V. Bansal, H. Jani, J.D. Plessis, P.J. Coloe, S.K. Bhargava, Adv. Mater., 20(2008), pp. 717-723.
DOI URL |
[10] |
C. Li, M. Iqbal, J. Lin, X. Luo, B. Jiang, V. Malgras, K.C.-W. Wu, J. Kim, Y. Yamauchi, Acc. Chem. Res., 51(2018), pp. 1764-1773.
DOI URL |
[11] |
T.T.H. Hoang, S. Ma, J.I. Gold, P.J.A. Kenis, A.A. Gewirth, ACS Catal., 7(2017), pp. 3313-3321.
DOI URL |
[12] |
Z. Zhang, Y. Wang, Z. Qi, W. Zhang, J. Qin, J. Frenzel, J. Phys. Chem. C, 113(2009), pp. 12629-12636.
DOI URL |
[13] |
Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu, J. Mater. Sci. Technol., 48(2020), pp. 123-129.
DOI URL |
[14] | R. Li, X. Liu, R. Wu, J. Wang, Z. Li, K.C. Chan, H. Wang, Y. Wu, Z. Lu, Adv. Mater., 31(2019), Article 1904989. |
[15] |
X. Wang, R. Li, Z. Li, R. Xiao, X.-B. Chen, T. Zhang, J. Mater. Chem. B, 7(2019), pp. 4169-4176.
DOI URL |
[16] |
R. Li, X. Liu, H. Wang, Y. Wu, Z.P. Lu, Corros. Sci., 104(2016), pp. 227-235.
DOI URL |
[17] |
D. Ma, Y. Wang, Y. Li, R.Y. Umetsu, S. Ou, K. Yubuta, W. Zhang, J. Mater. Sci. Technol., 36(2020), pp. 128-133.
DOI URL |
[18] |
X. Luo, R. Li, Z. Liu, L. Huang, M. Shi, T. Xu, T. Zhang, Mater. Lett., 76(2012), pp. 96-99.
DOI URL |
[19] |
Y. Ding, Y.-J. Kim, J. Erlebacher, Adv. Mater., 16(2004), pp. 1897-1900.
DOI URL |
[20] |
X. Wen, L. Chang, Y. Gao, J. Han, Z. Bai, Y. Huan, M. Li, Z. Tang, X. Yan, Inorg. Chem. Front., 5(2018), pp. 1207-1212.
DOI URL |
[21] |
Y. Wang, C. He, W. Xing, F. Li, L. Tong, Z. Chen, X. Liao, M. Steinhart, Adv. Mater., 22(2010), pp. 2068-2072.
DOI URL |
[22] |
M. Li, Y. Su, J. Zhao, H. Geng, J. Zhang, L. Zhang, C. Yang, Y. Zhang, CrystEngComm, 17(2015), pp. 1296-1304.
DOI URL |
[23] |
N.A. Luechinger, S.G. Walt, W.J. Stark, Chem. Mater., 22(2010), pp. 4980-4986.
DOI URL |
[24] |
E. Wierzbicka, G.D. Sulka, Sens. Actuators B Chem., 222(2016), pp. 270-279.
DOI URL |
[25] | S. Parida, D. Kramer, C.A. Volkert, H. Rösner, J. Erlebacher, J. Weissmüller, Phys. Rev. Lett., 97(2006), Article 035504. |
[26] |
Z. Li, D. Wang, B. Li, X. Lu, J. Electrochem. Soc., 157(2010), pp. K223-K226.
DOI URL |
[27] |
C. Zhao, X. Wang, Z. Qi, H. Ji, Z. Zhang, Corros. Sci., 52(2010), pp. 3962-3972.
DOI URL |
[28] |
S. Yang, X. Dai, B.B. Stogin, T.-S. Wong, Proc. Natl. Acad. Sci. U. S. A., 113(2016), pp. 268-273.
DOI URL |
[29] |
B.-B. Xu, R.Zhang, X.-Q. Liu, H. Wang, Y.-L. Zhang, H.-B. Jiang, L. Wang, Z.-C. Ma, J.-F. Ku, F.-S. Xiao, H.-B. Sun, Chem. Commun., 48(2012), pp. 1680-1682.
DOI URL |
[30] |
X. Wang, C. Wang, L. Cheng, S.-T. Lee, Z. Liu, J. Am. Chem. Soc., 134(2012), pp. 7414-7422.
DOI URL |
[31] |
M. Pohl, A. Otto, Surf. Sci., 406(1998), pp. 125-137.
DOI URL |
[32] |
Y. Kalachyova, M. Erzina, P. Postnikov, V. Svorcik, O. Lyutakov, Appl. Surf. Sci., 458(2018), pp. 95-99.
DOI URL |
[33] |
Z. Zuo, K. Zhu, C. Gu, Y. Wen, G. Cui, J. Qu, Appl. Surf. Sci., 379(2016), pp. 66-72.
DOI URL |
[34] |
Y. Chen, F. Ge, S. Guang, Z. Cai, J. Alloys Compd., 726(2017), pp. 484-489.
DOI URL |
[35] |
L.-B. Zhong, J. Yin, Y.-M. Zheng, Q. Liu, X.-X. Cheng, F.-H. Luo, Anal. Chem., 86(2014), pp. 6262-6267.
DOI URL |
[36] |
D. He, B. Hu, Q.-F. Yao, K. Wang, S.-H. Yu, ACS Nano, 3(2009), pp. 3993-4002.
DOI URL |
[37] |
C.-L. Zhang, K.-P. Lv, H.-P. Cong, S.-H. Yu, Small, 8(2012), pp. 648-653.
DOI URL |
[38] | M. Yang, L. Zhang, B. Chen, Z. Wang, C. Chen, H. Zeng, Nanotechnology, 28(2016), Article 055301. |
[39] |
Q. Zheng, S. Cheng, J.H. Strader, E. Ma, J. Xu, Scr. Mater., 56(2007), pp. 161-164.
DOI URL |
[40] | Q. Zheng, J. Xu, E. Ma, J. Appl. Phys., 102(2007), Article 113519. |
[41] | T.B. Massalski, Binary Alloy Phase Diagrams, American Society for Metals, Metals Park, Ohio(1986). |
[42] | B.D. Cullity, Elements of X-ray Diffraction, (2nd edition), Addison-Wesley, USA(1978). |
[43] |
R. Li, N. Wu, J. Liu, Y. Jin, X.-B. Chen, T. Zhang, Corros. Sci., 119(2017), pp. 23-32.
DOI URL |
[44] | C. Yang, B.H. Ko, S. Hwang, Z. Liu, Y. Yao, W. Luc, M. Cui, A.S. Malkani, T. Li, X. Wang, J. Dai, B. Xu, G. Wang, D. Su, F. Jiao, L. Hu, Sci. Adv., 6 (2020),p. eaaz6844. |
[45] |
C.-C. Lee, Y.-Y. Cheng, H.Y. Chang, D.-H. Chen, J. Alloys Compd., 480(2009), pp. 674-680.
DOI URL |
[46] |
S. Yan, D. Sun, Y. Tan, X. Xing, H. Yu, Z. Wu, J. Phys. Chem. Solids, 98(2016), pp. 107-114.
DOI URL |
[47] |
L. Zeng, Z. Li, X. Wang, J. Chem. Eng. Data, 61(2016), pp. 797-805.
DOI URL |
[48] |
A. Merbach, M.N. Pitteloud, P. Jaccard, Helv. Chim. Acta, 55(1972), pp. 44-52.
DOI URL |
[49] |
Z. Deng, C. Zhang, L. Liu, Intermetallics, 52(2014), pp. 9-14.
DOI URL |
[50] |
A. Inoue, Acta Mater., 48(2000), pp. 279-306.
DOI URL |
[51] |
B. Sharma, R.R. Frontiera, A.-I. Henry, E. Ringe, R.P. Van Duyne, Mater. Today, 15(2012), pp. 16-25.
DOI URL |
[52] |
R. Li, G. Shi, Y. Wang, M. Wang, Y. Zhu, X. Sun, H. Xu, C. Chang, Optik, 172(2018), pp. 49-56.
DOI URL |
[53] |
G. Kartopu, M. Es-Souni, A.V. Sapelkin, D. Dunstan, Physica Status Solidi A, 203(2006), pp. R82-R84.
DOI URL |
[54] |
Z. Hu, J. Wang, R. Li, C. Xu, X. Liu, Y. Wang, E. Fu, Z. Lu, Langmuir, 34(2018), pp. 13041-13046.
DOI URL |
[55] |
Z. Jiang, Y. Tian, S. Ding, J. Wen, C. Wang, CrystEngComm, 18(2016), pp. 1200-1206.
DOI URL |
[56] |
A.K. Pal, D.B. Mohan, J. Alloys Compd., 698(2017), pp. 460-468.
DOI URL |
[57] | L.H. Qian, X.Q. Yan, T. Fujita, A. Inoue, M.W. Chen, Appl. Phys. Lett., 90(2007), Article 153120. |
[1] | Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 145-150. |
[2] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
[3] | Zhuwei Lv, Chenchen Yuan, Haibo Ke, Baolong Shen. Defects activation in CoFe-based metallic glasses during creep deformation [J]. J. Mater. Sci. Technol., 2021, 69(0): 42-47. |
[4] | M.C. Ri, D.W. Ding, Y.H. Sun, W.H. Wang. Microstructure change in Fe-based metallic glass and nanocrystalline alloy induced by liquid nitrogen treatment [J]. J. Mater. Sci. Technol., 2021, 69(0): 1-6. |
[5] | Yanhui Li, Siwen Wang, Xuewei Wang, Meiling Yin, Wei Zhang. New FeNiCrMo(P, C, B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance [J]. J. Mater. Sci. Technol., 2020, 43(0): 32-39. |
[6] | Kim Jeong Tae, Hong Sung Hwan, Park Jin Man, Jürgen Eckert, Kim Ki Buem. New para-magnetic (CoFeNi)50(CrMo)50-x(CB)x (x = 20, 25, 30) non-equiatomic high entropy metallic glasses with wide supercooled liquid region and excellent mechanical properties [J]. J. Mater. Sci. Technol., 2020, 43(0): 135-143. |
[7] | Qingzhuo Hu, Fabao Zhang, Jinjun Zhang, Wei Jiang, Bo Zhang. Attractive nanofiber structure based on Cu-Ti/metal sandwich film with excellent electrocatalytic performance for ethanol oxidation [J]. J. Mater. Sci. Technol., 2020, 58(0): 215-221. |
[8] | Xianglong Lu, Tianshui Yu, Hailing Wang, Lihua Qian, Ruichun Luo, Pan Liu, Yao Yu, Lin Liu, Pengxiang Lei, Songliu Yuan. Nanoporous Au-Sn with solute strain for simultaneously enhanced selectivity and durability during electrochemical CO2 reduction [J]. J. Mater. Sci. Technol., 2020, 43(0): 154-160. |
[9] | L. Huang, Z.Q. Chen, P. Huang, X.K. Meng, F. Wang. Irradiation-induced homogeneous plasticity in amorphous/amorphous nanolaminates [J]. J. Mater. Sci. Technol., 2020, 57(0): 70-77. |
[10] | Binbin Wang, Liangshun Luo, Fuyu Dong, Liang Wang, Hongying Wang, Fuxin Wang, Lei Luo, Baoxian Su, Yanqing Su, Jingjie Guo, Hengzhi Fu. Impact of hydrogen microalloying on the mechanical behavior of Zr-bearing metallic glasses: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2020, 45(0): 198-206. |
[11] | Dianguo Ma, Yingmin Wang, Yanhui Li, Umetsu Rie Y., Shuli Ou, Kunio Yubuta, Wei Zhang. Structure and properties of nanoporous FePt fabricated by dealloying a melt-spun Fe60Pt20B20 alloy and subsequent annealing [J]. J. Mater. Sci. Technol., 2020, 36(0): 128-133. |
[12] | Peng Jia, Ruiwen Huang, Suode Zhang, Engang Wang, Jiahao Yao. Synthesis of Ag-Cr thin film metallic glasses with enhanced sulfide-resistance [J]. J. Mater. Sci. Technol., 2020, 53(0): 32-36. |
[13] | Chaoyang Wang, Shengli Zhu, Yanqin Liang, Zhenduo Cui, Shuilin Wu, Chunling Qin, Shuiyuan Luo, Akihisa Inoue. Understanding the macroscopical flexibility/fragility of nanoporous Ag: Depending on network connectivity and micro-defects [J]. J. Mater. Sci. Technol., 2020, 53(0): 91-101. |
[14] | Bowen Zhao, Zhengwang Zhu, Xin Dong Qin, Zhengkun Li, Haifeng Zhang. Highly efficient and stable CuZr-based metallic glassy catalysts for azo dye degradation [J]. J. Mater. Sci. Technol., 2020, 46(0): 88-97. |
[15] | Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd [J]. J. Mater. Sci. Technol., 2020, 48(0): 123-129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||