J. Mater. Sci. Technol. ›› 2020, Vol. 53: 32-36.DOI: 10.1016/j.jmst.2020.01.070
• Letter • Previous Articles Next Articles
Peng Jiaa,b,*(), Ruiwen Huanga,b, Suode Zhangc, Engang Wanga,b, Jiahao Yaoc,**(
)
Received:
2019-12-11
Published:
2020-09-15
Online:
2020-09-21
Contact:
Peng Jia,Jiahao Yao
Peng Jia, Ruiwen Huang, Suode Zhang, Engang Wang, Jiahao Yao. Synthesis of Ag-Cr thin film metallic glasses with enhanced sulfide-resistance[J]. J. Mater. Sci. Technol., 2020, 53: 32-36.
Fig. 1. (a) Appearance of the Ag-Cr combinatorial sputtered film library deposited on a Si wafer with 50 mm diameter as well as the configuration of the targets, the compositions of the patches at the center line are marked and measured by EDS analysis. (b) XRD patterns of the Ag-Cr compositional library as marked in (a).
Fig. 2. (a) XRD patterns of the compositional uniform Ag-Cr as-deposited thin films with different composition, inset the XRD spectrum of as-deposited nanocrystalline pure Ag film; (b) High-resolution TEM image and the inset selected-area electron diffraction (SAED) pattern for the Ag50Cr50 TFMG sample of ~1 μm thickness.
Fig. 3. Polarization curves for the Ag-Cr alloy films with various Cr content, as well as the nanocrystalline pure Ag film and corresponding bulk silver sample in (a) 0.01 M K2S solution and (b) 0.1 M NaCl solution.
Composition | Ecorr (VSCE) | icorr (A/cm2) |
---|---|---|
Ag90Cr10 | -0.67 ± 0.06 | (6.57 ± 0.63) × 10-6 |
Ag80Cr20 | -0.47 ± 0.04 | (1.88 ± 0.23) × 10-6 |
Ag70Cr30 | -0.33 ± 0.03 | (1.67 ± 0.19) × 10-7 |
Ag60Cr40 | -0.39 ± 0.04 | (3.67 ± 0.35) × 10-7 |
Ag50Cr50 | -0.16 ± 0.02 | (9.64 ± 0.83) × 10-8 |
Pure Ag film | -0.70 ± 0.06 | (2.10 ± 0.22) × 10-5 |
Bulk silver | -0.62 ± 0.05 | (2.49 ± 0.30) × 10-5 |
Table 1 Characteristic electrochemical parameters of Ag-Cr alloy films, pure Ag film and bulk silver sample in 0.01 M K2S solution.
Composition | Ecorr (VSCE) | icorr (A/cm2) |
---|---|---|
Ag90Cr10 | -0.67 ± 0.06 | (6.57 ± 0.63) × 10-6 |
Ag80Cr20 | -0.47 ± 0.04 | (1.88 ± 0.23) × 10-6 |
Ag70Cr30 | -0.33 ± 0.03 | (1.67 ± 0.19) × 10-7 |
Ag60Cr40 | -0.39 ± 0.04 | (3.67 ± 0.35) × 10-7 |
Ag50Cr50 | -0.16 ± 0.02 | (9.64 ± 0.83) × 10-8 |
Pure Ag film | -0.70 ± 0.06 | (2.10 ± 0.22) × 10-5 |
Bulk silver | -0.62 ± 0.05 | (2.49 ± 0.30) × 10-5 |
Composition | Ecorr (VSCE) | Epit (VSCE) | icorr (A/cm2) | ipass (A/cm2) |
---|---|---|---|---|
Ag90Cr10 | -0.14 ± 0.03 | 0.07 ± 0.02 | (4.32 ± 0.25) × 10-7 | (2.69 ± 0.18) × 10-6 |
Ag80Cr20 | -0.26 ± 0.05 | — | (4.91 ± 0.28) × 10-7 | — |
Ag70Cr30 | -0.30 ± 0.06 | — | (5.07 ± 0.32) × 10-7 | — |
Ag60Cr40 | -0.13 ± 0.03 | 0.07 ± 0.02 | (3.67 ± 0.25) × 10-7 | (1.17 ± 0.16) × 10-6 |
Ag50Cr50 | -0.14 ± 0.03 | 0.07 ± 0.02 | (4.68 ± 0.34) × 10-7 | (3.28 ± 0.33) × 10-6 |
Pure Ag film | -0.07 ± 0.01 | 0.07 ± 0.02 | (3.15 ± 0.43) × 10-7 | (1.19 ± 0.17) × 10-6 |
Bulk silver | -0.11 ± 0.01 | 0.08 ± 0.01 | (1.26 ± 0.23) × 10-6 | (8.16 ± 0.43) × 10-6 |
Table 2 Characteristic electrochemical parameters of Ag-Cr alloy films, pure Ag film and bulk silver sample in 0.1 M NaCl solution.
Composition | Ecorr (VSCE) | Epit (VSCE) | icorr (A/cm2) | ipass (A/cm2) |
---|---|---|---|---|
Ag90Cr10 | -0.14 ± 0.03 | 0.07 ± 0.02 | (4.32 ± 0.25) × 10-7 | (2.69 ± 0.18) × 10-6 |
Ag80Cr20 | -0.26 ± 0.05 | — | (4.91 ± 0.28) × 10-7 | — |
Ag70Cr30 | -0.30 ± 0.06 | — | (5.07 ± 0.32) × 10-7 | — |
Ag60Cr40 | -0.13 ± 0.03 | 0.07 ± 0.02 | (3.67 ± 0.25) × 10-7 | (1.17 ± 0.16) × 10-6 |
Ag50Cr50 | -0.14 ± 0.03 | 0.07 ± 0.02 | (4.68 ± 0.34) × 10-7 | (3.28 ± 0.33) × 10-6 |
Pure Ag film | -0.07 ± 0.01 | 0.07 ± 0.02 | (3.15 ± 0.43) × 10-7 | (1.19 ± 0.17) × 10-6 |
Bulk silver | -0.11 ± 0.01 | 0.08 ± 0.01 | (1.26 ± 0.23) × 10-6 | (8.16 ± 0.43) × 10-6 |
Fig. 4. Electrochemical impedance spectroscopy (EIS) complex plane impedance plots for the Ag-Cr alloy films with various Cr content, as well as the nanocrystalline pure Ag film and corresponding bulk silver sample in (a) 0.01 M K2S solution and (b) 0.1 M NaCl solution.
[1] |
T.E. Graedel, J. Electrochem. Soc. 139 (1992) 1963-1970.
DOI URL |
[2] |
J.P. Franey, G.W. Kammlott, T.E. Graedel, Corros. Sci. 25 (1985) 133-143.
DOI URL |
[3] | D.W. Rice, P. Peterson, E.B. Rigby, P.B.P. Phipps, R. J. Cappell, R. Tremoureux, J.Electrochem. Soc. 128 (1981) 275-284. |
[4] |
W.H. Wang, C. Dong, C.H. Shek, Mater. Sci. Eng. R 44 (2004) 45-89.
DOI URL |
[5] |
A.L. Greer, E. Ma, MRS Bull. 32 (2007) 611-615.
DOI URL |
[6] |
J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, C. Rullyani, Thin Solid Films 520 (2012) 5097-5122.
DOI URL |
[7] | Y. Li, J. Mater. Sci. Technol. 15 (1999) 97-110. |
[8] |
S.J. Pang, T. Zhang, K. Asami, A. Inoue, Acta Mater. 50 (2002) 489-497.
DOI URL |
[9] |
S.J. Pang, T. Zhang, K. Asami, A. Inoue, Corros. Sci. 44 (2002) 1847-1856.
DOI URL |
[10] |
J.R. Scully, A. Gebert, J.H. Payer, J. Mater. Res. 22 (2007) 302-313.
DOI URL |
[11] |
Y. Li, J. Xu, J. Mater. Sci. Technol. 33 (2017) 1278-1288.
DOI URL |
[12] |
Z.M. Wang, J. Zhang, J.Q. Wang, Intermetallics 18 (2010) 2077-2082.
DOI URL |
[13] |
J. Wu, S.D. Zhang, W.H. Sun, Y. Gao, J.Q. Wang, Corros. Sci. 136 (2018) 161-173.
DOI URL |
[14] |
L.M. Zhang, S.D. Zhang, A.L. Ma, A.J. Umoh, H.X. Hu, Y.G. Zheng, B.J. Yang, J.Q. Wang, J. Mater. Sci. Technol. 35 (2019) 1378-1387.
DOI URL |
[15] |
L. Yu, J. Tang, H. Wang, Y. Wang, J. Qiao, M. Apreutesei, B. Normand, Corros. Sci. 150 (2019) 42-53.
DOI URL |
[16] |
K.K. Xu, A.D. Lan, J.W. Qiao, H.J. Yang, P.D. Han, P.K. Liaw, Intermetallics 105 (2019) 179-186.
DOI URL |
[17] |
J. Qiao, J. Fan, F. Yang, X. Shi, H. Yang, A. Lan, Metals 8 (2018) 52.
DOI URL |
[18] |
H. Ma, E. Ma, J. Xu, J. Mater. Res. 18 (2003) 2288-2291.
DOI URL |
[19] |
Q.K. Jiang, G.Q. Zhang, L. Yang, X.D. Wang, K. Saksl, H. Franz, R. Wunderlich, H. Fecht, J.Z. Jiang, Acta Mater. 55 (2007) 4409-4418.
DOI URL |
[20] |
W. Zhang, Q. Zhang, A. Inoue, J. Mater. Res. 23 (2008) 1452-1456.
DOI URL |
[21] |
N. Hua, S. Pang, Y. Li, J. Wang, R. Li, K. Georgarakis, A.R. Yavari, G. Vaughan, T. Zhang, J. Mater. Res. 26 (2011) 539-546.
DOI URL |
[22] |
H.B. Lou, X.D. Wang, F. Xu, S.Q. Ding, Q.P. Cao, K. Hono, J.Z. Jiang, Appl. Phys. Lett. 99 (2011), 051910.
DOI URL |
[23] | S.F. Zhao, Y. Shao, P. Gong, K.F. Yao, Adv. Mater. Sci. Eng. 2014 (2014), 192187. |
[24] |
S. Pang, Y. Liu, H. Li, L. Sun, Y. Li, T. Zhang, J. Alloys. Compd. 625 (2015) 323-327.
DOI URL |
[25] |
K.J. Laws, K.F. Shamlaye, M. Ferry, J. Alloys. Compd. 513 (2012) 10-13.
DOI URL |
[26] |
U. Mizutani, K. Yoshino, J. Phys. F-Met. Phys. 14 (1984) 1179-1192.
DOI URL |
[27] |
A. Takeuchi, A. Inoue, Mater. Trans. JIM 41 (2000) 1372-1378.
DOI URL |
[28] | B.X. Liu, E. Ma, J. Li, L.J. Huang, Nucl. Instrum. Methods Phys.Res. Sect. B-Beam Interact. Mater. Atoms 19-20 (1987) 682-690. |
[29] |
O. Jin, B.X. Liu, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 114 (1996) 56-63.
DOI URL |
[30] |
T. Gebhardt, D. Music, M. Ekholm, I.A. Abrikosov, J. von Appen, R. Dronskowski, D. Wagner, J. Mayer, J.M. Schneider, Acta Mater. 59 (2011) 1493-1501.
DOI URL |
[1] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
[2] | Jiawei Ding, Haitao Wang, En-Hou Han. A multiphysics model for studying transient crevice corrosion of stainless steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 186-196. |
[3] | Hongxia Wan, Dongdong Song, Xiaolei Shi, Yong Cai, Tingting Li, Changfeng Chen. Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment [J]. J. Mater. Sci. Technol., 2021, 60(0): 197-205. |
[4] | Ji Liu, Jianqiu Wang, Zhiming Zhang, Hui Zheng. Repassivation behavior of alloy 690TT in simulated primary water at different temperatures [J]. J. Mater. Sci. Technol., 2021, 68(0): 227-235. |
[5] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
[6] | A.C. Bouali, N.M. André, M.R. Silva Campos, M. Serdechnova, J.F. dos Santos, S.T. Amancio-Filho, M.L. Zheludkevich. Influence of LDH conversion coatings on the adhesion and corrosion protection of friction spot-joined AA2024-T3/CF-PPS [J]. J. Mater. Sci. Technol., 2021, 67(0): 197-210. |
[7] | Yuwei Ye, Hao Chen, Yangjun Zou, Haichao Zhao. Study on self-healing and corrosion resistance behaviors of functionalized carbon dot-intercalated graphene-based waterborne epoxy coating [J]. J. Mater. Sci. Technol., 2021, 67(0): 226-236. |
[8] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
[9] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
[10] | Hao Liu, Baomin Fan, Guifeng Fan, Yucong Ma, Hua Hao, Wen Zhang. Anti-corrosive mechanism of poly (N-ethylaniline)/sodium silicate electrochemical composites for copper: Correlated experimental and in-silico studies [J]. J. Mater. Sci. Technol., 2021, 72(0): 202-216. |
[11] | Fangqiang Ning, Xiang Wang, Ying Yang, Jibo Tan, Ziyu Zhang, Dan Jia, Xinqiang Wu, En-Hou Han. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water [J]. J. Mater. Sci. Technol., 2021, 70(0): 136-144. |
[12] | Jiashun Shi, Suchun Wang, Xin Cheng, Shiqiang Chen, Guangzhou Liu. Constructing zwitterionic nanofiber film for anti-adhesion of marine corrosive microorganisms [J]. J. Mater. Sci. Technol., 2021, 70(0): 145-155. |
[13] | Yuan-Yun Zhao, Feng Qian, Chengliang Zhao, Chunxiao Xie, Jianguo Wang, Chuntao Chang, Yanjun Li, Lai-Chang Zhang. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses [J]. J. Mater. Sci. Technol., 2021, 70(0): 205-213. |
[14] | Xiaoming Sun, Lingzhong Du, Hao Lan, Jingyi Cui, Liang Wang, Runguang Li, Zhiang Liu, Junpeng Liu, Weigang Zhang. Mechanical, corrosion and magnetic behavior of a CoFeMn1.2NiGa0.8 high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 139-144. |
[15] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||