J. Mater. Sci. Technol. ›› 2021, Vol. 61: 75-84.DOI: 10.1016/j.jmst.2020.06.012
• Research Article • Previous Articles Next Articles
Xian-Zong Wanga,b, Hong-Qiang Fanc, Triratna Muneshwarb, Ken Cadienb, Jing-Li Luob,*()
Received:
2020-04-10
Revised:
2020-05-19
Accepted:
2020-06-01
Published:
2021-01-20
Online:
2021-01-20
Contact:
Jing-Li Luo
Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment[J]. J. Mater. Sci. Technol., 2021, 61: 75-84.
Fig. 1. Schematic diagram of the single layer and multilayer coatings. (a) Preparation processes and (b) sample information of the CrOn/Cr and multilayer CrO*/Cr coatings.
Fig. 5. Deconvolution of XPS spectra of Cr 2p of the CrOn/Cr and CrO*/Cr after sputtering with different times. (a) 0 s, (b) 10 s, (c) 20 s, (d) 30 s, (e) 40 s and (f) 70 s. The parameters used for deconvolution of XPS spectra and the corresponding results are presented in Table 1, Table 2.
Sputtering time (s) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | |
---|---|---|---|---|---|---|---|---|---|
Cr (0) | Binding Energy (eV) | 574.29 | 574.25 | 574.25 | 574.32 | 574.33 | 574.33 | 574.35 | 574.38 |
FWHM (eV) | 1.02 | 1.07 | 1.20 | 1.17 | 1.16 | 1.18 | 1.17 | 1.14 | |
Area | 0.951 | 0.784 | 0.911 | 0.968 | 1.039 | 0.868 | 0.965 | 0.888 | |
Cr (III) | Binding Energy (eV) | 576.23 | 575.74 | 575.77 | 575.86 | 575.90 | 575.74 | 575.77 | 575.70 |
FWHM (eV) | 2.51 | 2.60 | 2.73 | 2.63 | 2.52 | 2.75 | 2.52 | 2.73 | |
Area | 1.835 | 1.743 | 1.542 | 1.408 | 1.247 | 1.325 | 1.083 | 1.115 | |
CrOx | Binding Energy (eV) | 577.93 | 577.94 | 577.94 | 578.07 | 578.13 | 578.05 | 577.94 | 578.00 |
FWHM (eV) | 2.13 | 2.13 | 2.28 | 2.13 | 2.08 | 2.18 | 2.16 | 2.17 | |
Area | 0.643 | 0.445 | 0.347 | 0.311 | 0.287 | 0.311 | 0.285 | 0.233 | |
∑x2 (×10-4) | 6.615 | 6.597 | 11.554 | 8.574 | 6.538 | 10.966 | 9.671 | 9.194 |
Table 1 Binding enegy, full width at half maximum (FWHM) of the XPS spectra used for the deconvolution and the corresponding fitting parameters obtained for the main species presented in the prepared CrOn/Cr coating after sputtering with different times.
Sputtering time (s) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | |
---|---|---|---|---|---|---|---|---|---|
Cr (0) | Binding Energy (eV) | 574.29 | 574.25 | 574.25 | 574.32 | 574.33 | 574.33 | 574.35 | 574.38 |
FWHM (eV) | 1.02 | 1.07 | 1.20 | 1.17 | 1.16 | 1.18 | 1.17 | 1.14 | |
Area | 0.951 | 0.784 | 0.911 | 0.968 | 1.039 | 0.868 | 0.965 | 0.888 | |
Cr (III) | Binding Energy (eV) | 576.23 | 575.74 | 575.77 | 575.86 | 575.90 | 575.74 | 575.77 | 575.70 |
FWHM (eV) | 2.51 | 2.60 | 2.73 | 2.63 | 2.52 | 2.75 | 2.52 | 2.73 | |
Area | 1.835 | 1.743 | 1.542 | 1.408 | 1.247 | 1.325 | 1.083 | 1.115 | |
CrOx | Binding Energy (eV) | 577.93 | 577.94 | 577.94 | 578.07 | 578.13 | 578.05 | 577.94 | 578.00 |
FWHM (eV) | 2.13 | 2.13 | 2.28 | 2.13 | 2.08 | 2.18 | 2.16 | 2.17 | |
Area | 0.643 | 0.445 | 0.347 | 0.311 | 0.287 | 0.311 | 0.285 | 0.233 | |
∑x2 (×10-4) | 6.615 | 6.597 | 11.554 | 8.574 | 6.538 | 10.966 | 9.671 | 9.194 |
Sputtering time (s) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | |
---|---|---|---|---|---|---|---|---|---|
Cr (0) | Binding Energy (eV) | 574.29 | 574.30 | 574.29 | 574.34 | 574.34 | 574.35 | 574.33 | 574.39 |
FWHM (eV) | 0.74 | 0.95 | 1.15 | 1.09 | 1.28 | 1.07 | 1.06 | 1.08 | |
Area | 0.263 | 0.427 | 0.851 | 0.760 | 1.137 | 0.881 | 0.911 | 0.965 | |
Cr (III) | Binding Energy (eV) | 576.24 | 576.01 | 575.89 | 575.77 | 575.95 | 575.71 | 575.78 | 575.76 |
FWHM (eV) | 2.32 | 2.76 | 2.66 | 2.69 | 2.32 | 2.61 | 2.68 | 2.47 | |
Area | 1.671 | 2.296 | 2.192 | 1.822 | 1.196 | 1.211 | 1.020 | 0.835 | |
CrOx | Binding Energy (eV) | 577.95 | 577.94 | 578.10 | 578.07 | 578.08 | 578.07 | 578.16 | 578.05 |
FWHM (eV) | 2.63 | 2.40 | 2.11 | 2.20 | 2.07 | 2.16 | 2.01 | 1.88 | |
Area | 0.993 | 0.696 | 0.472 | 0.413 | 0.328 | 0.269 | 0.189 | 0.165 | |
Cr (VI) | Binding Energy (eV) | 579.16 | |||||||
FWHM (eV) | 1.48 | ||||||||
Area | 0.838 | ||||||||
∑x2 (×10-4) | 8.788 | 4.214 | 7.434 | 7.269 | 13.057 | 7.569 | 5.980 | 8.303 |
Table 2 Binding enegy, full width at half maximum (FWHM) of the XPS spectra used for the deconvolution and the corresponding fitting parameters obtained for the main species presented in the prepared CrO*/Cr coating after sputtering with different times.
Sputtering time (s) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | |
---|---|---|---|---|---|---|---|---|---|
Cr (0) | Binding Energy (eV) | 574.29 | 574.30 | 574.29 | 574.34 | 574.34 | 574.35 | 574.33 | 574.39 |
FWHM (eV) | 0.74 | 0.95 | 1.15 | 1.09 | 1.28 | 1.07 | 1.06 | 1.08 | |
Area | 0.263 | 0.427 | 0.851 | 0.760 | 1.137 | 0.881 | 0.911 | 0.965 | |
Cr (III) | Binding Energy (eV) | 576.24 | 576.01 | 575.89 | 575.77 | 575.95 | 575.71 | 575.78 | 575.76 |
FWHM (eV) | 2.32 | 2.76 | 2.66 | 2.69 | 2.32 | 2.61 | 2.68 | 2.47 | |
Area | 1.671 | 2.296 | 2.192 | 1.822 | 1.196 | 1.211 | 1.020 | 0.835 | |
CrOx | Binding Energy (eV) | 577.95 | 577.94 | 578.10 | 578.07 | 578.08 | 578.07 | 578.16 | 578.05 |
FWHM (eV) | 2.63 | 2.40 | 2.11 | 2.20 | 2.07 | 2.16 | 2.01 | 1.88 | |
Area | 0.993 | 0.696 | 0.472 | 0.413 | 0.328 | 0.269 | 0.189 | 0.165 | |
Cr (VI) | Binding Energy (eV) | 579.16 | |||||||
FWHM (eV) | 1.48 | ||||||||
Area | 0.838 | ||||||||
∑x2 (×10-4) | 8.788 | 4.214 | 7.434 | 7.269 | 13.057 | 7.569 | 5.980 | 8.303 |
Fig. 8. Electrochemical impedance spectra of the specimens in 0.05 M H2SO4 + 2 ppm NaF solution. The inset plot is the electrical equivalent circuit used for data fitting.
Symbol | Rs (Ω cm2) | Qdl (Ω-1 cm-2 sn) | nt | Rt (Ω cm2) | Qf (Ω-1 cm-2 sn) | nf | Rf (Ω cm2) | Σx2 |
---|---|---|---|---|---|---|---|---|
304 SS | 2.865 | 5.135 × 10-5 | 0.802 | 20.2 | 1.829 × 10-4 | 0.959 | 3.579 × 104 | 1.505 × 10-3 |
CrOn/Cr/SS | 2.680 | 1.191 × 10-4 | 0.835 | 14.8 | 5.557 × 10-5 | 1 | 1.579 × 105 | 1.822 × 10-3 |
CrO*/Cr/SS | 2.661 | 3.299 × 10-5 | 0.853 | 12.5 | 5.158 × 10-5 | 0.841 | 3.779 × 105 | 2.888 × 10-3 |
(CrO*/Cr)2/SS | 2.960 | 5.104 × 10-5 | 0.934 | 19.4 | 2.061 × 10-5 | 0.797 | 6.597 × 105 | 2.212 × 10-4 |
(CrO*/Cr)3/SS | 2.172 | 3.63 × 10-6 | 0.901 | 10.6 | 5.061 × 10-5 | 0.889 | 8.341 × 105 | 2.010 × 10-3 |
Table 3 Values of the components from the impedance fitting results of 304 SS, CrOn/Cr/SS, CrO*/Cr/SS, (CrO*/Cr)2/SS, and (CrO*/Cr)3/SS in 0.05 M H2SO4+2 ppm NaF.
Symbol | Rs (Ω cm2) | Qdl (Ω-1 cm-2 sn) | nt | Rt (Ω cm2) | Qf (Ω-1 cm-2 sn) | nf | Rf (Ω cm2) | Σx2 |
---|---|---|---|---|---|---|---|---|
304 SS | 2.865 | 5.135 × 10-5 | 0.802 | 20.2 | 1.829 × 10-4 | 0.959 | 3.579 × 104 | 1.505 × 10-3 |
CrOn/Cr/SS | 2.680 | 1.191 × 10-4 | 0.835 | 14.8 | 5.557 × 10-5 | 1 | 1.579 × 105 | 1.822 × 10-3 |
CrO*/Cr/SS | 2.661 | 3.299 × 10-5 | 0.853 | 12.5 | 5.158 × 10-5 | 0.841 | 3.779 × 105 | 2.888 × 10-3 |
(CrO*/Cr)2/SS | 2.960 | 5.104 × 10-5 | 0.934 | 19.4 | 2.061 × 10-5 | 0.797 | 6.597 × 105 | 2.212 × 10-4 |
(CrO*/Cr)3/SS | 2.172 | 3.63 × 10-6 | 0.901 | 10.6 | 5.061 × 10-5 | 0.889 | 8.341 × 105 | 2.010 × 10-3 |
Fig. 10. Surface morphologies of the specimens after 3 h of potentiostatic polarization at 0.6 V. (a) 304 SS, (b) CrOn/Cr/SS, (c) CrO*/Cr/SS, (d) (CrO*/Cr)2/SS, and (e) (CrO*/Cr)3/SS.
Fig. 12. A comparison of ICRs of 304 SS, CrOn/Cr/SS, and CrO*/Cr/SS before and after 3 h of potentiostatic polarization. Schematic plots of the changes at the interface, including corrosion products formed on the specimen surface and oxidation of the coatings.
[1] | Y. Yang, S. Zhang, Z. Lu, L. Wang, W. Li, Corros. Sci. 142 (2018) 249-257. |
[2] | J.L. Lu, N. Abbas, J.N. Tang, J. Tang, G.M. Zhu, Corros. Sci. 158 (2019), 108106. |
[3] | S. Pugal Mani, N. Rajendran, Energy 133 (2017) 1050-1062. |
[4] | D. Lee, D.G. Lee, J. Power Sources 327 (2016) 119-126. |
[5] |
N.F. Asri, T. Husaini, A.B. Sulong, E.H. Majlan, W.R.W. Daud, Int. J. Hydrogen Energy 42 (2017) 9135-9148.
DOI URL |
[6] | N.A.M. Radzuan, M.Y. Zakaria, A.B. Sulong, J. Sahari, Composites Part B 110 (2017) 153-160. |
[7] | D. Lee, J.W. Lim, D.G. Lee, Compos. Struct. 167 (2017) 144-151. |
[8] | M. Alishahi, F. Mahboubi, S.M. Mousavi Khoie, M. Aparicio, R. Hübner, F. Soldera, R. Gago, J. Power Sources 322 (2016) 1-9. |
[9] | A. Orsi, O.E. Kongstein, P.J. Hamilton, A. Oedegaard, I.H. Svenum, K. Cooke, J. Power Sources 285 (2015) 530-537. |
[10] | K. Lin, X. Li, H. Dong, S. Du, Y. Lu, X. Ji, D. Gu, Int. J. Hydrogen Energy 42 (2017) 2338-2348. |
[11] | J. Wang, J. Sun, S. Li, Z. Wen, S. Ji, Int. J. Hydrogen Energy 37 (2012) 1140-1144. |
[12] | N. Huang, C. Liang, H. Wang, L. Xu, H. Xu, Int. J. Corros. 2011 (2011) 1-7. |
[13] | T. Mittermeier, A. Weiß, F. Hasché, G. Hübner, H.A. Gasteiger, J. Electrochem. Soc. 164 (2017) F127-F137. |
[14] | M. Alishahi, F. Mahboubi, S.M. Mousavi Khoie, M. Aparicio, E. Lopez-Elvira, J. Méndez, R. Gago, RSC Adv. 6 (2016) 89061-89072. |
[15] | J. Xu, S. Xu, P. Munroe, Z.H. Xie, RSC Adv. 5 (2015) 67348-67356. |
[16] | F. Bi, L. Peng, P. Yi, X. Lai, J. Power Sources 314 (2016) 58-65. |
[17] | J. Xu, Z. Li, S. Xu, P. Munroe, Z.H. Xie, J. Power Sources 297 (2015) 359-369. |
[18] | M.A. Deyab, J. Power Sources 268 (2014) 50-55. |
[19] | H. Husby, O.E. Kongstein, A. Oedegaard, F. Seland, Int. J. Hydrogen Energy 39 (2014) 951-957. |
[20] | M. Wu, C. Lu, H. Tao, G. Chen, D. Wen, H. Zhang, Z. Dong, A. Wang, Surf. Coat. Technol. 307 (2016) 374-381. |
[21] | S.F. Wang, H.C. Lin, H.Y. Bor, Y.L. Tsai, C.N. Wei, J. Alloys Compd. 509 (2011) 10110-10114. |
[22] | A. Foroughi-Abari, C. Xu, K.C. Cadien, Thin Solid Films 520 (2012) 1762-1767. |
[23] | D.F. Williams, E.J.C. Kellar, D.A. Jesson, J.F. Watts, Appl. Surf. Sci. 403 (2017) 240-247. |
[24] | T. Sönmez, M. Fazeli Jadidi, K. Kazmanli, Ö. Birer, M. Ürgen, Vacuum 129 (2016) 63-73. |
[25] |
A. Latifi, M. Imani, M.T. Khorasani, M. Daliri Joupari, Appl. Surf. Sci. 320 (2014) 471-481.
DOI URL |
[26] | Z. Lei, Q. Zhang, X. Zhu, D. Ma, F. Ma, Z. Song, Y.Q. Fu, Appl. Surf. Sci. 431 (2018) 170-176. |
[27] | W. Wei, Y. Zhu, J. Yang, F. Yang, Appl. Surf. Sci. 301 (2014) 539-543. |
[28] | C. Quan, Y. He, Surf. Coat. Technol. 269 (2015) 319-323. |
[1] | Xiaofan Zhai, Peng Ju, Fang Guan, Jizhou Duan, Nan Wang, Yimeng Zhang, Ke Li, Baorong Hou. Biofilm inhibition mechanism of BiVO4 inserted zinc matrix in marine isolated bacteria [J]. J. Mater. Sci. Technol., 2021, 75(0): 86-95. |
[2] | Yuqiao Dong, Jiaqi Li, Dake Xu, Guangling Song, Dan Liu, Haipeng Wang, M.Saleem Khan, Ke Yang, Fuhui Wang. Investigation of microbial corrosion inhibition of Cu-bearing 316L stainless steel in the presence of acid producing bacterium Acidithiobacillus caldus SM-1 [J]. J. Mater. Sci. Technol., 2021, 64(0): 176-186. |
[3] | Jing Chen, Liang Wu, Xingxing Ding, Qiang Liu, Xu Dai, Jiangfeng Song, Bin Jiang, Andrej Atrens, Fusheng Pan. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2021, 64(0): 10-20. |
[4] | Xiao-Tao Luo, Yi Ge, Yingchun Xie, Yingkang Wei, Renzhong Huang, Ninshu Ma, Chidambaram Seshadri Ramachandran, Chang-Jiu Li. Dynamic evolution of oxide scale on the surfaces of feed stock particles from cracking and segmenting to peel-off while cold spraying copper powder having a high oxygen content [J]. J. Mater. Sci. Technol., 2021, 67(0): 105-115. |
[5] | Gaopeng Xu, Kui Wang, Xianping Dong, Lei Yang, Mahmoud Ebrahimi, Haiyan Jiang, Qudong Wang, Wenjiang Ding. Review on corrosion resistance of mild steels in liquid aluminum [J]. J. Mater. Sci. Technol., 2021, 71(0): 12-22. |
[6] | Xiaoming Sun, Lingzhong Du, Hao Lan, Jingyi Cui, Liang Wang, Runguang Li, Zhiang Liu, Junpeng Liu, Weigang Zhang. Mechanical, corrosion and magnetic behavior of a CoFeMn1.2NiGa0.8 high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 139-144. |
[7] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
[8] | Junwei Chang, Zhenyu Wang, En-hou Han, Xinlei Liang, Gang Wang, Zuyao Yi, Na Li. Corrosion resistance of tannic acid, d-limonene and nano-ZrO2 modified epoxy coatings in acid corrosion environments [J]. J. Mater. Sci. Technol., 2021, 65(0): 137-150. |
[9] | Shuaihang Qiu, Mingliang Li, Gang Shao, Hailong Wang, Jinpeng Zhu, Wen Liu, Bingbing Fan, Hongliang Xu, Hongxia Lu, Yanchun Zhou, Rui Zhang. (Ca,Sr,Ba)ZrO3: A promising entropy-stabilized ceramic for titanium alloys smelting [J]. J. Mater. Sci. Technol., 2021, 65(0): 82-88. |
[10] | Wei Xu, Xin Lu, Jingjing Tian, Chao Huang, Miao Chen, Yu Yan, Luning Wang, Xuanhui Qu, Cuie Wen. Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications [J]. J. Mater. Sci. Technol., 2020, 41(0): 191-198. |
[11] | Yanhui Li, Siwen Wang, Xuewei Wang, Meiling Yin, Wei Zhang. New FeNiCrMo(P, C, B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance [J]. J. Mater. Sci. Technol., 2020, 43(0): 32-39. |
[12] | Weiyi Wang, Qinglin Pan, Geng Lin, Xiaoping Wang, Yuqiao Sun, Xiangdong Wang, Ji Ye, Yuanwei Sun, Yi Yu, Fuqing Jiang, Jun Li, Yaru Liu. Microstructure and properties of novel Al-Ce-Sc, Al-Ce-Y, Al-Ce-Zr and Al-Ce-Sc-Y alloy conductors processed by die casting, hot extrusion and cold drawing [J]. J. Mater. Sci. Technol., 2020, 58(0): 155-170. |
[13] | Xiao-Li Fan, Chang-Yang Li, Yu-Bo Wang, Yuan-Fang Huo, Shuo-Qi Li, Rong-Chang Zeng. Corrosion resistance of an amino acid-bioinspired calcium phosphate coating on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 49(0): 224-235. |
[14] | Liting Guo, Changdong Gu, Jie Feng, Yongbin Guo, Yuan Jin, Jiangping Tu. Hydrophobic epoxy resin coating with ionic liquid conversion pretreatment on magnesium alloy for promoting corrosion resistance [J]. J. Mater. Sci. Technol., 2020, 37(0): 9-18. |
[15] | Wang Jian, Cui Lanyue, Ren Yande, Zou Yuhong, Ma Jinlong, Wang Chengjian, Zheng Zhongyin, Chen Xiaobo, Zeng Rongchang, Zheng Yufeng. In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 47(0): 52-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||