Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 49 Issue (0): 224-235    DOI: 10.1016/j.jmst.2020.01.046
Research Article Current Issue | Archive | Adv Search |
Corrosion resistance of an amino acid-bioinspired calcium phosphate coating on magnesium alloy AZ31
Xiao-Li Fana, Chang-Yang Lia, Yu-Bo Wanga, Yuan-Fang Huoa, Shuo-Qi Lia, Rong-Chang Zenga,b,*()
a Corrosion Laboratory for Light Metals, College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
b School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
Download:  HTML  PDF(7218KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

An l-cysteine-bioinspired calcium phosphate (Ca-P) coating is prepared upon magnesium alloy AZ31 in a water bath at 60 °C. FE-SEM, FTIR, XRD, electrochemical characterization, hydrogen evolution tests and XPS were used to evaluate the microstructure, chemistry and corrosion performance of the samples. Results indicate that l-cysteine promotes the nucleation process of the coating and significantly increases its thickness. This can be attributed to the complexation of the carboxyl group and mercapto group of l-cysteine with calcium ions. Indeed, the obtained Ca-P coating possesses higher corrosion resistance than that prepared in l-cysteine-free bath.

Key words:  Magnesium alloys      Phosphate      Coating      Corrosion resistance      Amino acid     
Received:  08 October 2019     
Corresponding Authors:  Rong-Chang Zeng     E-mail:  rczeng@foxmail.com

Cite this article: 

Xiao-Li Fan, Chang-Yang Li, Yu-Bo Wang, Yuan-Fang Huo, Shuo-Qi Li, Rong-Chang Zeng. Corrosion resistance of an amino acid-bioinspired calcium phosphate coating on magnesium alloy AZ31. J. Mater. Sci. Technol., 2020, 49(0): 224-235.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2020.01.046     OR     https://www.jmst.org/EN/Y2020/V49/I0/224

Fig. 1.  Illustration of the preparing of the Ca-P coating and Ca-PL-Cys coating on Mg alloy AZ31 and dissociation equilibrium diagram of l-cysteine in the solution.
Fig. 2.  SEM micrographs of the (a, b, c) Ca-P coating and (d, e, f) Ca-PL-Cys coating.
Samples Spectrum O P Ca C Al Mg Cl N S Ca/P
Ca-P coating #1 49 20.77 13.1 10.24 3.86 2.84 0.19 -- -- 0.63
#2 59.69 16.45 13.99 9.63 0.19 0.01 0.05 -- -- 0.85
#3 50.9 19.12 12.38 9.36 3.68 4.56 0 -- -- 0.65
Ca-PL-Cys coating #4 63.73 16.94 13.52 4.14 -- -- -- 1.66 -- 0.80
#5 56.93 15.92 12.86 10.83 -- 0.39 0.03 2.99 0.06 0.81
#6 70.91 13.25 10.89 4.2 -- -- -- 0.76 -- 0.81
Table 1  Chemical composition of Ca-P coating and Ca-PL-Cys coating (at.%).
Fig. 3.  Cross-section and elemental mapping images of (a) Ca-P coating and (b) Ca-PL-Cys coating.
Fig. 4.  Surface roughness of (a) Ca-P coating and (b) Ca-PL-Cys coating.
Fig. 5.  (I) FTIR spectra of (a) Ca-P coating and (b) Ca-PL-Cys coating and (II) XRD patterns of (a) Mg alloy AZ31, (b) Ca-P coating and (c) Ca-PL-Cys coating.
Fig. 6.  OCP curves of (a) Mg alloy AZ31, (b) Ca-P coating and (c) Ca-PL-Cys coating.
Fig. 7.  (I, II, III) Nyquist curves and corresponding equivalent circuits, (IV) bode plots of (a) AZ31 Mg alloy, (b) Ca-P coating and (c) Ca-PL-Cys coating.
Samples Rs (kΩ cm2) CPE1
-1 sn cm-2)
n1 R1 (kΩ cm2) CPE2
-1 sn cm-2)
n2 Rct (kΩ cm2) L (102H cm2) RL (kΩ cm2)
AZ31 substrate 0.08 ± 0.01 1.58 × 10-5 ± 5.5 × 10-6 0.89 ± 0.02 - - - 0.55 ± 0.16 4.63 ± 0.83 7.21 ± 0.02
Ca-P coating 0.12 ± 0.02 4.38 × 10-6 ± 4.47 × 10-7 0.68 ± 0.03 10.67 ± 0.55 8.13 × 10-6 ± 4.29 × 10-6 0.87 ± 0.04 2.98 ± 0.32 1.67 ± 0.82 2.95 ± 7.63
Ca-PL-Cys coating 0.09 ± 0.01 1.15 × 10-5 ±7.28 × 10-6 0.65 ± 0.12 280.22 ± 152.57 1.3 × 10-5 ±1.27 × 10-5 0.80 ± 0.16 19.86 ± 2.93 - -
Table 2  Fitting results of EIS spectra.
Fig. 8.  Polarization curves of (a) Mg alloy AZ31, (b) Ca-P coating and (c) Ca-PL-Cys coating.
Ecorr (V/SCE) icorr (μA cm-2) βa (102 mV/dec) c (102 mV/dec) Rp (kΩ cm2)
AZ31 substrate -1.48 ± 0.05 5.57 ± 2.49 1.51 ± 0.76 1.49 ± 0.04 2.53 ± 1.83
Ca-P coating -1.51 ± 0.03 7.21 ± 2.96 1.70 ± 0.98 1.27 ± 0.21 4.30 ± 1.65
Ca-PL-Cys coating -1.41 ± 0.03 0.42 ± 1.84 1.87 ± 0.57 1.55 ± 0.17 40.6 ± 2.09
Table 3  Electrochemical parameters of the polarization curves of the samples.
Fig. 9.  (I) Hydrogen evolution rates, (II) pH-Time curves of (a) Mg alloy AZ31, (b) Ca-P coating and (c) Ca-PL-Cys coating.
Fig. 10.  Digital camera photographs and corrosion SEM morphologies after a 168 h immersion for (a, b, c) Mg alloy AZ31, (d, e, f) Ca-P coating and (g, h, i) Ca-PL-Cys coating.
Samples Spectrum O C P Ca Mg Al N S
AZ31 #1 51.49 13.68 15.06 8.56 6.38 4.83 -- --
#2 59.23 -- 18.24 12.36 6.73 3.43 -- --
#3 56.5 20.2 9.98 7.88 3.9 1.54 -- --
Ca-P coating #4 41.62 -- 27.94 20.68 5.65 4.11 -- --
#5 35.84 27.87 8.99 14.47 -- -- 10.15 2.68
#6 34.67 37.68 7.29 5.56 0.69 0.74 12.75 0.62
Ca-PL-Cys coating #7 56.48 12.33 11.91 8.48 4.29 3.17 2.99 0.34
#8 34.4 2.69 26.84 20.76 5.2 4.73 5.24 0.14
#9 45.73 9.2 17.8 12.75 5.58 2.1 6.71 0.14
Table 4  EDS analysis of the samples after immersion for 168 h (at.%).
Fig. 11.  Digital camera photo and surface roughness of (a) Mg alloy AZ31, (b) Ca-P coating and (c) Ca-PL-Cys coating after immersion 168 h and removing corrosion products.
Fig. 12.  Corresponding microscopic topographies at different time during the formation of (a-f) Ca-P coating and (g-l) Ca-PL-Cys coating.
Samples Spectrum O C Mg P Ca Al N S Ca/P
Ca-P coating 10 s #1 15.45 -- 76.9 4.26 1.4 2.00 -- -- 0.33
#2 53.65 -- -- 22.76 23.59 -- -- -- 1.04
#3 12.39 -- 79.66 4.20 1.29 2.46 -- -- 0.31
Ca-P coating 30 s #4 20.81 67.31 6.30 2.87 2.72 0.46
#5 77.79 12.45 9.75 0.78
#6 68.78 6.02 14.64 10.56 0.72
Ca-P coating 60 s #7 70.25 9.79 11.04 8.91 0.81
#8 62.97 10.53 0.09 13.59 12.82 0.94
#9 63.70 8.04 14.80 13.45 0.91
Ca-PL-Cys coating 10 s #10 60.68 20.94 3.03 7.35 6.01 1.53 0.46 0.82
#11 50.92 13.48 13.99 10.41 8.18 3.03 -- 0.79
#12 50.53 20.17 4.11 11.52 9.77 -- 3.76 0.15 0.85
Ca-PL-Cys coating 30 s #13 66.32 13.06 8.80 6.59 5.00 0.23 0.75
#14 16.21 22.35 46.02 4.61 3.37 1.77 5.04 0.62 0.73
#15 33.10 18.16 13.61 15.85 18.92 0.36 1.16
Ca-PL-Cys coating 60 s #16 65.26 6.37 13.41 12.68 2.28 0.95
#17 19.64 20.07 49.88 4.67 2.14 1.41 1.94 0.27 0.46
#18 67.14 11.86 9.06 6.93 4.92 0.09 0.77
Table 5  EDS analysis of corresponding microscopic topographies at different time during the formation of coatings (at.%).
Fig. 13.  XPS survey spectrum of Ca-PL-Cys coating.
Fig. 14.  XPS spectra of Ca-PL-Cys coating (a, d) C 1s, (b, e) N 1s, (c, f) S 2p.
Fig. 15.  Schematic diagram of (a-c) Ca-P coating and (d-f) Ca-PL-Cys coating formation mechanism.
[1] P. Xiong, Z.J. Jia, W.H. Zhou, J.L. Yan, P. Wang, W. Yuan, Y.Y. Li, Y. Cheng, Z.P. Guan, Y.F. Zheng, Acta Biomater. 92 (2019) 336-350.
pmid: 31085364
[2] A. Ali, F. Iqbal, A. Ahmad, F. Ikram, A. Nawaz, A.A. Chaudhry, S.A. Siddiqi, I. Rehman, Surf. Coat. Technol. 357 (2019) 716-727.
[3] M. Mardali, H. Salimijazi, F. Karimzadeh, B. Luthringer-Feyerabend, Surf. Coat. Technol. 374 (2019) 1071-1077.
[4] J. Chen, Y.W. Song, D.Y. Shan, E.H. Han, J. Mater. Sci. Technol. 31 (4) (2015) 384-390.
[5] W.T. Yu, R.X. Sun, Z.Q. Guo, Z.Y. Wang, Y. He, G.Y. Lu, P.Y. Chen, K.Z. Chen, Appl. Surf. Sci. 464 (2019) 708-715.
[6] P. Wan, L.L. Tan, K. Yang, J. Mater. Sci. Technol. 32 (9) (2016) 827-834.
[7] Q. Wang, L.L. Tan, K. Yang, J. Mater. Sci. Technol. 31 (8) (2015) 845-851.
[8] T. Mokabber, Q. Zhou, A.I. Vakis, P. van Rijn, Y.T. Pei, Mater. Sci. Eng. C 100 (2019) 475-484.
[9] E. Yilmaz, B. Cakiroglu, A. Gokce, F. Findik, H.O. Gulsoy, N. Gulsoy, O. Mutlu, M. Ozacar, Mater. Sci. Eng. C 101 (2019) 292-305.
[10] K. Batebi, B. Abbasi Khazaei, A. Afshar, Surf. Coat. Technol. 352 (2018) 522-528.
[11] S. Singh, G. Singh, N. Bala, Mater. Chem. Phys. 237 (2019), 121884.
[12] V. Aina, L. Bergandi, G. Lusvardi, G. Malavasi, F.E. Imrie, I.R. Gibson, G. Cerrato, D. Ghigo, Mater. Sci. Eng. C 33 (2013) 1132-1142.
[13] Y.Y. Su, K.Z. Li, K.J. Guan, X.F. Zhu, J. Sun, Mater. Sci. Eng. C 95 (2019) 49-56.
[14] X.J. Ji, Q. Cheng, J. Wang, Y.B. Zhao, Z.Z. Han, F. Zhang, S.Q. Li, R.C. Zeng, Z.L. Wang, Front. Mater. Sci. 13 (1) (2019) 87-98.
[15] L.Y. Li, L.Y. Cui, B. Liu, R.C. Zeng, X.B. Chen, S.Q. Li, Z.L. Wang, E.H. Han, Appl. Surf. Sci. 465 (2019) 1066-1077.
[16] Q. Du, D.Q. Wei, S.D. Wang, S. Cheng, Y.M. Wang, B.Q. Li, D.C. Jia, Y. Zhou, Appl. Surf. Sci. 487 (2019) 708-718.
[17] L.Y. Cui, G.B. Wei, Z.Z. Han, R.C. Zeng, L. Wang, Y.H. Zou, S.Q. Li, D.K. Xu, S.K. Guan, J. Mater. Sci. Technol. 35 (2019) 254-265.
[18] P. Liu, J.M. Wang, X.T. Yu, X.B. Chen, S.Q. Li, D.C. Chen, S.K. Guan, R.C. Zeng, L.Y. Cui, J. Magnesium Alloys 7 (2019) 144-154.
[19] B. El Ibrahimi, A. Jmiai, L. Bazzi S. El Issami, Arabian J. Chem. 13 (2017) 740-771.
[20] H. AshassiSorkhabi, S. MoradiAlavian, M.D. Esrafili, A. Kazempour, Prog. Org. Coat. 131 (2019) 191-202.
[21] M.L. Yang, J.H. Wu, D.Q. Fang, B. Li, Y. Yang, J. Mater. Sci. Technol. 34 (2018) 2464-2471.
[22] B. El Ibrahimi, K. El Mouaden, A. Jmiai, A. Baddouh, S. El Issami, L. Bazzi, M. Hilali, J. Surf. Interfaces Mater. 17 (2019), 100343.
[23] H. Ashassi-Sorkhabi, S. Moradi-Alavian, R. Jafari, A. Kazempour, E. Asghari, Mater. Chem. Phys. 225 (2019) 298-308.
[24] Y. Wang, B.H. Ding, S.Y. Gao, X.B. Chen, R.C. Zeng, L.Y. Cui, S.J. Li, S.Q. Li, Y.H. Zou, E.H. Han, S.K. Guan, Q.Y. Liu, Mater. Sci. Eng. C 105 (2019), 110042.
[25] D. Mei, S.V. Lamaka, C. Feiler, M.L. Zheludkevich, Corros. Sci. 153 (2019) 258-271.
[26] M. Mobin, S. Zehra, M. Parveen, J. Mol. Liq. 216 (2016) 598-607.
[27] Z. Ghelichkhah, S. Sharifi-Asl, K. Farhadi, S. Banisaied, S. Ahmadi, D.D. Macdonald, Corros. Sci. 91 (2015) 129-139.
doi: 10.1016/j.corsci.2014.11.011
[28] D. Wang, L. Gao, D. Zhang, D. Yang, H. Wang, T. Lin, Mater. Chem. Phys. 169 (2016) 142-151.
[29] A.B. Silva, S.M.L. Agostinho, O.E. Barcia, G.G.O. Cordeiro, E. D’Elia, Corros. Sci. 48 (11) (2006) 3668-3674.
doi: 10.1016/j.corsci.2006.02.003
[30] J. Chen, Y.W. Song, D.Y. Shan, E.H. Han, Corros. Sci. 93 (2015) 90-99.
doi: 10.1016/j.corsci.2015.01.008
[31] S. Leleu, B. Rives, N. Causse, N. Pébère, J. Magnesium Alloys 7 (2019) 47-57.
[32] G.L. Song, A. Atrens, D. St John, Magnesium Technol. (2001) 255-262.
[33] Y. Lin, S. Cai, S. Jiang, D. Xie, R. Ling, J. Sun, J. Wei, K. Shen, G. Xu, J. Mech. Behav. Biomed. Mater. 90 (2019) 547-555.
doi: 10.1016/j.jmbbm.2018.11.007 pmid: 30471542
[34] H.X. Wang, S.J. Zhu, L.G. Wang, Y.S. Feng, X. Ma, S.K. Guan, Appl. Surf. Sci. 307 (2014) 92-100.
doi: 10.1016/j.apsusc.2014.03.172
[35] L.Y. Cui, R.C. Zeng, S.K. Guan, W.C. Qi, F. Zhang, S.Q. Li, E.H. Han, J. Alloys. Compd. 695 (2017) 2464-2476.
doi: 10.1016/j.jallcom.2016.11.146
[36] B.K. Jiang, A.Y. Chen, J.F. Gu, J.T. Fan, Y. Liu, P. Wang, H.J. Li, H. Sun, J.H. Yang, X.Y. Wang, Carbon 157 (2019) 537-548.
doi: 10.1016/j.carbon.2019.09.013
[37] L.T. Guo, C.D. Gu, J. Feng, Y.B. Guo, Y. Jin, J.P. Tu, J. Mater. Sci. Technol. 37 (2020) 9-18.
[38] Y.Y. Zhu, W.D. Gao, H.D. Huang, W.H. Chang, S.F. Zhang, R.F. Zhang, R.F. Zhao, Y.J. Zhang, Appl. Surf. Sci. 487 (2019) 581-592.
[39] X.Y. Zhu, Y.H. Wu, W.J. Zhao, J.B. Pu, D.H. Yang, Q.J. Xue, Prog. Org. Coat. 134 (2019) 234-243.
[40] X.R. Zhang, R.N. Ma, A. Du, Q. Liu, Y.H. Fan, X. Zhao, J.J. Wu, X.M. Cao, Appl. Surf. Sci. 484 (2019) 814-824.
[41] S. Banthia, S. Sengupta, S. Das, K. Das, Surf. Coat. Technol. 374 (2019) 833-844.
[42] Y.B. Zhao, H.P. Liu, C.Y. Li, Y. Chen, S.Q. Li, R.C. Zeng, Z.L. Wang, Appl. Surf. Sci. 434 (2018) 787-795.
doi: 10.1016/j.apsusc.2017.11.012
[43] L.Y. Li, B. Liu, R.C. Zeng, S.Q. Li, F. Zhang, Y.H. Zou, H.W. Jiang, X.B. Chen, S.K. Guan, Q.Y. Liu, Front. Mater. Sci. 12 (2018) 184-197.
doi: 10.1007/s11706-018-0424-1
[44] Y.B. Zhao, X.Y. Chen, S.Q. Li, R.C. Zeng, F. Zhang, Z.L. Wang, S.K. Guan, J. Colloid Interface Sci. 547 (2019) 309-317.
pmid: 30965229
[45] X. Gong, Y. Bi, Y. Zhao, G. Liu, W.Y. Teoh, RSC Adv. 4 (47) (2014) 24653-24657.
[46] P. Karfa, E. Roy, S. Patra, S. Kumar, A. Tarafdar, R. Madhuri, P.K. Sharma, RSC Adv. 5 (72) (2015) 58141-58153.
doi: 10.1039/C5RA09525E
[47] C.X. Chai, Y.H. Xu, D.Y. Li, X.W. Zhao, Y. Xu, L. Zhang, Y.F. Wu, Prog. Org. Coat. 129 (2019) 159-170.
[1] Qun Luo, Yanlin Guo, Bin Liu, Yujun Feng, Jieyu Zhang, Qian Li, Kuochih Chou. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review[J]. 材料科学与技术, 2020, 44(0): 171-190.
[2] Liting Guo, Changdong Gu, Jie Feng, Yongbin Guo, Yuan Jin, Jiangping Tu. Hydrophobic epoxy resin coating with ionic liquid conversion pretreatment on magnesium alloy for promoting corrosion resistance[J]. 材料科学与技术, 2020, 37(0): 9-18.
[3] Hao Du, Chuanyu Cui, Housheng Liu, Guihong Song, Tianying Xiong. Improvement on compressive properties of lotus-type porous copper by a nickel coating on pore walls[J]. 材料科学与技术, 2020, 37(0): 114-122.
[4] C. Garcia-Cabezon, C. Garcia-Hernandez, M.L. Rodriguez-Mendez, F. Martin-Pedrosa. A new strategy for corrosion protection of porous stainless steel using polypyrrole films[J]. 材料科学与技术, 2020, 37(0): 85-95.
[5] Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration[J]. 材料科学与技术, 2020, 38(0): 39-46.
[6] Periša Jovana, Antić Željka, Ma Chong-Geng, Papan Jelena, Jovanović Dragana, D.Dramićanin Miroslav. Pesticide-induced photoluminescence quenching of ultra-small Eu3+-activated phosphate and vanadate nanoparticles[J]. 材料科学与技术, 2020, 38(0): 197-204.
[7] Wei Cui, Qibin Song, Huhu Su, Zhiqing Yang, Rui Yang, Na Li, Xing Zhang. Synergistic effects of Mg-substitution and particle size of chicken eggshells on hydrothermal synthesis of biphasic calcium phosphate nanocrystals[J]. 材料科学与技术, 2020, 36(0): 27-36.
[8] Maryam Jamalian, David P.Field. Gradient microstructure and enhanced mechanical performance of magnesium alloy by severe impact loading[J]. 材料科学与技术, 2020, 36(0): 45-49.
[9] H.X. Zeng, Z.W. Liu, J.S. Zhang, X.F. Liao, H.Y. Yu. Towards the diffusion source cost reduction for NdFeB grain boundary diffusion process[J]. 材料科学与技术, 2020, 36(0): 50-54.
[10] Chengxu Wang, Wei Chen, Minghui Chen, Demin Chen, Ke Yang, Fuhui Wang. Effect of TiN diffusion barrier on elements interdiffusion behavior of Ni/GH3535 system in LiF-NaF-KF molten salt at 700 ℃[J]. 材料科学与技术, 2020, 45(0): 125-132.
[11] Sang-Hoon Kim, Sang Won Lee, Byoung Gi Moon, Ha Sik Kim, Sung Hyuk Park. Variation in dynamic deformation behavior and resultant yield asymmetry of AZ80 alloy with extrusion temperature[J]. 材料科学与技术, 2020, 46(0): 225-236.
[12] Lei Liu, Liang Wu, Xiaobo Chen, Deen Sun, Yuan Chen, Gen Zhang, Xingxing Ding, Fusheng Pan. Enhanced protective coatings on Ti-10V-2Fe-3Al alloy through anodizing and post-sealing with layered double hydroxides[J]. 材料科学与技术, 2020, 37(0): 104-113.
[13] P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion[J]. 材料科学与技术, 2020, 45(0): 98-107.
[14] Suyun Liu, Li Liu, Ying Li, Fuhui Wang. Effects of N-alkylation on anticorrosion performance of doped polyaniline/epoxy coating[J]. 材料科学与技术, 2020, 39(0): 48-55.
[15] Lanlan Yang, Minghui Chen, Jinlong Wang, Yanxin Qiao, Pingyi Guo, Shenglong Zhu, Fuhui Wang. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation[J]. 材料科学与技术, 2020, 45(0): 49-58.
[1] Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel[J]. J. Mater. Sci. Technol., 2020, 47(0): 1 -9 .
[2] Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2020, 47(0): 10 -19 .
[3] Wenjing Long, Haining Li, Bing Yang, Nan Huang, Lusheng Liu, Zhigang Gai, Xin Jiang. Research Article Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’[J]. J. Mater. Sci. Technol., 2020, 48(0): 1 -8 .
[4] Long Chen, Chengtao Yang, Chaoyi Yan. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets[J]. J. Mater. Sci. Technol., 2020, 48(0): 100 -104 .
[5] Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48(0): 105 -113 .
[6] Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48(0): 114 -122 .
[7] Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. J. Mater. Sci. Technol., 2020, 48(0): 123 -129 .
[8] Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity[J]. J. Mater. Sci. Technol., 2020, 48(0): 130 -139 .
[9] Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 140 -145 .
[10] H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 146 -155 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.