J. Mater. Sci. Technol. ›› 2021, Vol. 75: 86-95.DOI: 10.1016/j.jmst.2020.10.006
• Research Article • Previous Articles Next Articles
Xiaofan Zhaia,c,e, Peng Jua,b,d,*(), Fang Guana,c,e, Jizhou Duana,c,e,*(), Nan Wanga,c,e, Yimeng Zhanga,c,e, Ke Lia, Baorong Houa,c,e
Received:
2020-06-15
Revised:
2020-08-10
Accepted:
2020-08-11
Published:
2020-11-02
Online:
2020-11-02
Contact:
Peng Ju,Jizhou Duan
About author:
duanjz@qdio.ac.cn (J. Duan).Xiaofan Zhai, Peng Ju, Fang Guan, Jizhou Duan, Nan Wang, Yimeng Zhang, Ke Li, Baorong Hou. Biofilm inhibition mechanism of BiVO4 inserted zinc matrix in marine isolated bacteria[J]. J. Mater. Sci. Technol., 2021, 75: 86-95.
ZnSO4•7H2O | Na2SO4 | H3BO3 | Al2(SO4)3•18H2O | Na2SO4 |
---|---|---|---|---|
250 g L-1 | 80 g L-1 | 26 g L-1 | 40 g L-1 | 250 g L-1 |
Table 1 Composition of sulfate electrolyte.
ZnSO4•7H2O | Na2SO4 | H3BO3 | Al2(SO4)3•18H2O | Na2SO4 |
---|---|---|---|---|
250 g L-1 | 80 g L-1 | 26 g L-1 | 40 g L-1 | 250 g L-1 |
BiVO4 concentration in electrolyte | pH | agitation speed | ultrasound power | |
---|---|---|---|---|
Z0 | 0 | 4~5 | 600 rpm | 0 W |
Z15 | 0 | 4~5 | 600 rpm | 15 W |
Z30 | 0 | 4~5 | 600 rpm | 30 W |
Z45 | 0 | 4~5 | 600 rpm | 45 W |
BVZ0 | 10 g L-1 | 4~5 | 600 rpm | 0 W |
BVZ15 | 10 g L-1 | 4~5 | 600 rpm | 15 W |
BVZ30 | 10 g L-1 | 4~5 | 600 rpm | 30 W |
BVZ45 | 10 g L-1 | 4~5 | 600 rpm | 45 W |
Table 2 Electrodepositing conditions of BiVO4 inserted zinc matrixes.
BiVO4 concentration in electrolyte | pH | agitation speed | ultrasound power | |
---|---|---|---|---|
Z0 | 0 | 4~5 | 600 rpm | 0 W |
Z15 | 0 | 4~5 | 600 rpm | 15 W |
Z30 | 0 | 4~5 | 600 rpm | 30 W |
Z45 | 0 | 4~5 | 600 rpm | 45 W |
BVZ0 | 10 g L-1 | 4~5 | 600 rpm | 0 W |
BVZ15 | 10 g L-1 | 4~5 | 600 rpm | 15 W |
BVZ30 | 10 g L-1 | 4~5 | 600 rpm | 30 W |
BVZ45 | 10 g L-1 | 4~5 | 600 rpm | 45 W |
Fig. 5. Bacterial coverage of Z-matrixes and BVZ-matrixes after 2 h exposure in 107 cfu mL-1 E. coli (a), S. aureus (b), and O. baumannii (c) suspension.
Fig. 6. Bacterial coverage variations of Z45 and BVZ45 (a), fluorescence microscopy images of Z45 (b) and BVZ45 (c) after during 4 “light-dark” cycles in 107 cfu mL-1 E. coli.
[1] | M.E. Callow, J.E. Callow, Biologist (London, U.K.) 49 (2002) 10-14. |
[2] |
Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang, T. Gu, J. Mater. Sci. Technol. 34 (2018) 1713-1718.
DOI URL |
[3] |
M.P. Schultz, J.A. Bendick, E.R. Holm, W.M. Hertel, Biofouling 27 (2011) 87-98.
DOI PMID |
[4] |
M.P. Schultz, Biofouling 23 (2007) 331-341.
DOI URL |
[5] |
I. Fitridge, T. Dempster, J. Guenther, R. de Nys, Biofouling 28 (2012) 649-669.
DOI PMID |
[6] |
X. Shi, W. Yan, D. Xu, M. Yan, C. Yang, Y. Shan, K. Yang, J. Mater. Sci. Technol. 34 (2018) 2480-2491.
DOI URL |
[7] |
D. Xu, E. Zhou, Y. Zhao, H. Li, Z. Liu, D. Zhang, C. Yang, H. Lin, X. Li, K. Yang, J. Mater. Sci. Technol. 34 (2018) 1325-1336.
DOI URL |
[8] |
P. Zhang, D. Xu, Y. Li, K. Yang, T. Gu, Bioelectrochemistry 101 (2015) 14-21.
DOI URL |
[9] |
D. Xu, T. Gu, Int. Biodeterior. Biodegrad. 91 (2014) 74-81.
DOI URL |
[10] |
D. Xu, Y. Li, T. Gu, Bioelectrochemistry 110 (2016) 52-58.
DOI URL |
[11] |
E. Zhou, H. Li, C. Yang, J. Wang, D. Xu, D. Zhang, T. Gu, Int. Biodeterior. Biodegrad. 127 (2018) 1-9.
DOI URL |
[12] |
R. Jia, D. Yang, J. Xu, D. Xu, T. Gu, Corros. Sci. 127 (2017) 1-9.
DOI URL |
[13] | F. Guan, J. Duan, X. Zhai, N. Wang, J. Zhang, D. Lu, B. Hou, J. Mater. Sci. Technol. 36 (2020) 55-64. |
[14] |
E. Zhou, D. Qiao, Y. Yang, D. Xu, Y. Lu, J. Wang, J.A. Smith, H. Li, H. Zhao, P.K. Liaw, F. Wang, J. Mater. Sci. Technol. 46 (2020) 201-210.
DOI URL |
[15] |
J.A. Callow, M.E. Callow, Nat. Commun. 2 (2011) 244.
DOI PMID |
[16] |
M. Lejars, A. Margaillan, C. Bressy, Chem. Rev. 112 (2012) 4347-4390.
DOI URL |
[17] |
I. Banerjee, R.C. Pangule, R.S. Kane, Adv. Mater. 23 (2011) 690-718.
DOI URL |
[18] |
A. Kubacka, M. Fernandez-Garcia, G. Colon, Chem. Rev. 112 (2012) 1555-1614.
DOI URL |
[19] |
R.A. Damodar, S.J. You, H.H. Chou, J. Hazard. Mater. 172 (2009) 1321-1328.
DOI URL |
[20] |
H. Kisch, Angew. Chem. Int. Ed. 52 (2013) 812-847.
DOI URL |
[21] | Y. Xiang, Q. Zhou, Z. Li, Z. Cui, X. Liu, Y. Liang, S. Zhu, Y. Zheng, K.W.K. Yeung, S. Wu, J.Mater. Sci. Technol. 57 (2020) 1-11. |
[22] |
O.K. Dalrymple, E. Stefanakos, M.A. Trotz, D.Y. Goswami, Appl. Catal. B-Environ. 98 (2010) 27-38.
DOI URL |
[23] |
Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J.J. Alvarez, Water Res. 42 (2008) 4591-4602.
DOI URL |
[24] |
V. Rodriguez-Gonzalez, S. Obregon, O.A. Patron-Soberano, C. Terashima, A. Fujishima, Appl. Catal. B Environ. 270 (2020), 118853.
DOI URL |
[25] |
H.A. Foster, I.B. Ditta, S. Varghese, A. Steele, Appl. Microbiol. Biotechnol. 90 (2011) 1847-1868.
DOI URL |
[26] |
S. Malato, P. Fernandez-Ibanez, M.I. Maldonado, J. Blanco, W. Gernjak, Catal. Today 147 (2009) 1-59.
DOI URL |
[27] |
J. Liang, C. Shan, X. Zhang, M. Tong, Chem. Eng. J. 279 (2015) 277-285.
DOI URL |
[28] |
C. Karunakaran, V. Rajeswari, P. Gomathisankar, Mater. Sci. Semicond. Process. 14 (2011) 133-138.
DOI URL |
[29] | X.Y. Yang, L.H. Chen, Y. Li, J.C. Rooke, C. Sanchez, B.-L. Su, Chem.Soc. Rev. 46 (2017) 481-558. |
[30] |
Y. Wang, Y. Long, Z. Yang, D. Zhang, J. Hazard. Mater. 351 (2018) 11-19.
DOI URL |
[31] |
Y. Wang, Y. Long, D. Zhang, J. Taiwan Inst. Chem. Eng. 75 (2017) 183-188.
DOI URL |
[32] |
Q. Liu, J. Liu, X. Luan, J. Mater. Sci. Technol. 35 (2019) 2942-2949.
DOI URL |
[33] |
X. Zhai, M. Myamina, J. Duan, B. Hou, Corros. Sci. 72 (2013) 99-107.
DOI URL |
[34] |
C. Qiao, L. Shen, L. Hao, X. Mu, J. Dong, W. Ke, J. Liu, B. Liu, J. Mater. Sci. Technol. 35 (2019) 2345-2356.
DOI URL |
[35] | H. Kazimierczak, K. Szymkiewicz, L. Rogal, E. Gileadi, N. Eliaz, J. Electrochem. Soc. 165 (2018) 526-535. |
[36] |
M. Sajjadnejad, A. Mozafari, H. Omidvar, M. Javanbakht, Appl. Surf. Sci. 300 (2014) 1-7.
DOI URL |
[37] |
P. Huang, K. Ma, X. Cai, D. Huang, X. Yang, J. Ran, F. Wang, T. Jiang, Colloids Surf. B 160 (2017) 628-638.
DOI URL |
[38] |
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269-271.
DOI URL |
[39] |
J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114 (2014) 9919-9986.
DOI URL |
[40] |
Y. Wang, W. Yang, X. Chen, J. Wang, Y. Zhu, Appl. Catal. B-Environ. 220 (2018) 337-347.
DOI URL |
[41] |
N. Ekthammathat, A. Phuruangrat, S. Thongtem, T. Thongtem, Russ. J. Phys. Chem. A 92 (2018) 1036-1040.
DOI URL |
[42] |
C. Regmi, D. Dhakal, S.W. Lee, Nanotechnology 29 (2018), 064001.
DOI URL |
[43] |
Y. Xiang, P. Ju, Y. Wang, Y. Sun, D. Zhang, J. Yu, Chem. Eng. J. 288 (2016) 264-275.
DOI URL |
[44] | H. Li, Y. Sun, B. Cai, S. Gan, D. Han, L. Niu, T. Wu, Appl. Catal. B- Environ. 170 (2015) 206-214. |
[45] |
J. Yu, A. Kudo, Adv. Funct. Mater. 16 (2006) 2163-2169.
DOI URL |
[46] |
C.W. Kim, Y.S. Son, M.J. Kang, D.Y. Kim, Y.S. Kang, Adv. Energy Mater. 6 (2016), 1501754.
DOI URL |
[47] |
W. Wang, Y. Yu, T. An, G. Li, H.Y. Yip, J.C. Yu, P.K. Wong, Environ. Sci. Technol. 46 (2012) 4599-4606.
DOI URL |
[48] |
C. Zeng, Y. Hu, T. Zhang, F. Dong, Y. Zhang, H. Huang, J. Mater. Chem. A 6 (2018) 16932-16942.
DOI URL |
[49] |
Y. Li, Y. Yang, J.W. Huang, L. Wang, H.D. She, J.B. Zhong, Q.Z. Wang, Rare Met. 38 (2019) 428-436.
DOI URL |
[50] |
L. Meng, W. Tian, F. Wu, F. Cao, L. Li, J. Mater. Sci. Technol. 35 (2019) 1740-1746.
DOI URL |
[51] |
X. Liu, S. Gu, Y. Zhao, G. Zhou, W. Li, J. Mater. Sci. Technol. 56 (2020) 45-68.
DOI URL |
[52] |
Z. Xiang, Y. Wang, P. Ju, D. Zhang, J. Electron. Mater. 46 (2017) 758-765.
DOI URL |
[53] |
E. Garcia-Lecina, I. Garcia-Urrutia, J.A. Diez, J. Morgiel, P. Indyka, Surf. Coat. Technol. 206 (2012) 2998-3005.
DOI URL |
[54] |
I. Tudela, Y. Zhang, M. Pal, I. Kerr, A.J. Cobley, Surf. Coat. Technol. 259 (2014) 363-373.
DOI URL |
[55] |
Y.J. Xue, H.B. Liu, M.M. Lan, J.S. Li, H. Li, Surf. Coat. Technol. 204 (2010) 3539-3545.
DOI URL |
[56] |
H.Y. Zheng, M.Z. An, J. Alloys Compd. 459 (2008) 548-552.
DOI URL |
[57] | L. Ye, J. Chen, L. Tian, J. Liu, T. Peng, K. Deng, L. Zan, Appl. Catal. B-Environ. 130 (2013) 1-7. |
[58] |
F.L. Xu, J.Z. Duan, B.R. Hou, A. Bergel, D. Féron, H.C. Flemming, Bioelectrochemistry 78 (2010) 92-95.
DOI URL |
[59] |
X. Xiong, Z. Wang, Y. Zhang, Z. Li, R. Shi, T. Zhang, Appl. Catal. B-Environ. 264 (2020), 118518.
DOI URL |
[60] |
K.P. Rumbaugh, K. Sauer, Nat. Rev. Microbiol. 18 (2020) 571-586.
DOI URL |
[61] |
S. Park, J. Park, J. Heo, S.E. Lee, J.W. Shin, M. Chang, J. Hong, J. Ind. Eng. Chem. 68 (2018) 229-237.
DOI URL |
[62] |
L.D. Tijing, M.T.G. Ruelo, A. Amarjargal, H.R. Pant, C.-H. Park, D.W. Kim, C.S. Kim, Chem. Eng. J. 197 (2012) 41-48.
DOI URL |
[63] |
Z. Pilbáth, L. Sziraki, Electrochim. Acta 53 (2008) 3218-3230.
DOI URL |
[64] |
X. Deng, H. Cao, C. Chen, H. Zhou, L. Yu, Sci. Bull. 64 (2019) 1280-1284.
DOI |
[65] |
Y. Li, D. Liao, T. Li, W. Zhong, X. Wang, X. Hong, H. Yu, J. Colloid Interface Sci. 570 (2020) 232-241.
DOI URL |
[66] |
J. Cheng, J. Feng, W. Pan, ACS Appl. Mater. Interfaces 7 (2015) 9638-9644.
DOI URL |
[67] | G. Huang, D. Gu, X. Li, L. Xing, Int. J. Electrochem. Sci. 8 (2013) 2905-2917. |
[1] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
[2] | Xiaoming Sun, Lingzhong Du, Hao Lan, Jingyi Cui, Liang Wang, Runguang Li, Zhiang Liu, Junpeng Liu, Weigang Zhang. Mechanical, corrosion and magnetic behavior of a CoFeMn1.2NiGa0.8 high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 139-144. |
[3] | Junwei Chang, Zhenyu Wang, En-hou Han, Xinlei Liang, Gang Wang, Zuyao Yi, Na Li. Corrosion resistance of tannic acid, d-limonene and nano-ZrO2 modified epoxy coatings in acid corrosion environments [J]. J. Mater. Sci. Technol., 2021, 65(0): 137-150. |
[4] | Shuaihang Qiu, Mingliang Li, Gang Shao, Hailong Wang, Jinpeng Zhu, Wen Liu, Bingbing Fan, Hongliang Xu, Hongxia Lu, Yanchun Zhou, Rui Zhang. (Ca,Sr,Ba)ZrO3: A promising entropy-stabilized ceramic for titanium alloys smelting [J]. J. Mater. Sci. Technol., 2021, 65(0): 82-88. |
[5] | Yuqiao Dong, Jiaqi Li, Dake Xu, Guangling Song, Dan Liu, Haipeng Wang, M.Saleem Khan, Ke Yang, Fuhui Wang. Investigation of microbial corrosion inhibition of Cu-bearing 316L stainless steel in the presence of acid producing bacterium Acidithiobacillus caldus SM-1 [J]. J. Mater. Sci. Technol., 2021, 64(0): 176-186. |
[6] | Jing Chen, Liang Wu, Xingxing Ding, Qiang Liu, Xu Dai, Jiangfeng Song, Bin Jiang, Andrej Atrens, Fusheng Pan. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2021, 64(0): 10-20. |
[7] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
[8] | Gaopeng Xu, Kui Wang, Xianping Dong, Lei Yang, Mahmoud Ebrahimi, Haiyan Jiang, Qudong Wang, Wenjiang Ding. Review on corrosion resistance of mild steels in liquid aluminum [J]. J. Mater. Sci. Technol., 2021, 71(0): 12-22. |
[9] | Xiao-Li Fan, Chang-Yang Li, Yu-Bo Wang, Yuan-Fang Huo, Shuo-Qi Li, Rong-Chang Zeng. Corrosion resistance of an amino acid-bioinspired calcium phosphate coating on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 49(0): 224-235. |
[10] | Wei Xu, Xin Lu, Jingjing Tian, Chao Huang, Miao Chen, Yu Yan, Luning Wang, Xuanhui Qu, Cuie Wen. Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications [J]. J. Mater. Sci. Technol., 2020, 41(0): 191-198. |
[11] | Yanhui Li, Siwen Wang, Xuewei Wang, Meiling Yin, Wei Zhang. New FeNiCrMo(P, C, B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance [J]. J. Mater. Sci. Technol., 2020, 43(0): 32-39. |
[12] | H.X. Zeng, Z.W. Liu, J.S. Zhang, X.F. Liao, H.Y. Yu. Towards the diffusion source cost reduction for NdFeB grain boundary diffusion process [J]. J. Mater. Sci. Technol., 2020, 36(0): 50-54. |
[13] | Liting Guo, Changdong Gu, Jie Feng, Yongbin Guo, Yuan Jin, Jiangping Tu. Hydrophobic epoxy resin coating with ionic liquid conversion pretreatment on magnesium alloy for promoting corrosion resistance [J]. J. Mater. Sci. Technol., 2020, 37(0): 9-18. |
[14] | Wang Jian, Cui Lanyue, Ren Yande, Zou Yuhong, Ma Jinlong, Wang Chengjian, Zheng Zhongyin, Chen Xiaobo, Zeng Rongchang, Zheng Yufeng. In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 47(0): 52-67. |
[15] | Lei Liu, Liang Wu, Xiaobo Chen, Deen Sun, Yuan Chen, Gen Zhang, Xingxing Ding, Fusheng Pan. Enhanced protective coatings on Ti-10V-2Fe-3Al alloy through anodizing and post-sealing with layered double hydroxides [J]. J. Mater. Sci. Technol., 2020, 37(0): 104-113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||