J. Mater. Sci. Technol. ›› 2021, Vol. 61: 63-74.DOI: 10.1016/j.jmst.2020.05.047
• Research Article • Previous Articles Next Articles
Dan Liua,b, Daoxin Liua,*(), Mario Guaglianob, Xingchen Xua, Kaifa Fana, Sara Bagherifardb,*(
)
Received:
2020-03-21
Revised:
2020-05-08
Accepted:
2020-05-27
Published:
2021-01-20
Online:
2021-01-20
Contact:
Daoxin Liu,Sara Bagherifard
Dan Liu, Daoxin Liu, Mario Guagliano, Xingchen Xu, Kaifa Fan, Sara Bagherifard. Contribution of ultrasonic surface rolling process to the fatigue properties of TB8 alloy with body-centered cubic structure[J]. J. Mater. Sci. Technol., 2021, 61: 63-74.
Fig. 1. (a) Microstructure of the base TB8 alloy, (b) EBSD image with IPF color coding, (c) Stress-strain curve obtained from the base material, (d) (001), (110), and (111) pole figures obtained from examining the axial-sectional plane, (e) Inverse pole figure along the TD1 direction.
Position | Al | Si | Nb | Mo | Ti |
---|---|---|---|---|---|
a | 3.29 | 0.21 | 2.88 | 15.10 | balance |
b | 3.22 | 0.19 | 2.82 | 14.95 | balance |
c | 3.27 | 0.19 | 2.90 | 15.22 | balance |
Table 1 Chemical composition (wt%) of TB8 alloy.
Position | Al | Si | Nb | Mo | Ti |
---|---|---|---|---|---|
a | 3.29 | 0.21 | 2.88 | 15.10 | balance |
b | 3.22 | 0.19 | 2.82 | 14.95 | balance |
c | 3.27 | 0.19 | 2.90 | 15.22 | balance |
Sample | UTS (MPa) | σ0.2 (MPa) | εf (%) | UT (J/cm3) | n |
---|---|---|---|---|---|
TB8 | 891.3 | 855.87 | 26.0 | 218.4 | 0.40 |
Table 2 Mechanical properties of the base TB8 alloy.
Sample | UTS (MPa) | σ0.2 (MPa) | εf (%) | UT (J/cm3) | n |
---|---|---|---|---|---|
TB8 | 891.3 | 855.87 | 26.0 | 218.4 | 0.40 |
Sample number | Lathe rotational speed (r/min) | Feed rate (mm/rev) | Static stress (MPa) | Fatigue life (cycle) |
---|---|---|---|---|
1 | 55 | 0.08 | 480 | 85853 |
2 | 55 | 0.10 | 630 | 99228 |
3 | 55 | 0.12 | 780 | 66395 |
4 | 75 | 0.08 | 630 | 91504 |
5 | 75 | 0.10 | 780 | 68176 |
6 | 75 | 0.12 | 480 | 176080 |
7 | 95 | 0.08 | 780 | 57918 |
8 | 95 | 0.10 | 480 | 110210 |
9 | 95 | 0.12 | 630 | 75084 |
Table 3 USRP parameters and the corresponding fatigue lives in the initial tests performed (at a maximum stress amplitude of 450 MPa) to identify the optimized parameters.
Sample number | Lathe rotational speed (r/min) | Feed rate (mm/rev) | Static stress (MPa) | Fatigue life (cycle) |
---|---|---|---|---|
1 | 55 | 0.08 | 480 | 85853 |
2 | 55 | 0.10 | 630 | 99228 |
3 | 55 | 0.12 | 780 | 66395 |
4 | 75 | 0.08 | 630 | 91504 |
5 | 75 | 0.10 | 780 | 68176 |
6 | 75 | 0.12 | 480 | 176080 |
7 | 95 | 0.08 | 780 | 57918 |
8 | 95 | 0.10 | 480 | 110210 |
9 | 95 | 0.12 | 630 | 75084 |
Fig. 3. (a) EBSD image with BD map of USRP-1sample, (b) IPF of USRP-5sample, (c) BD map of USRP-5 sample, (d) IPF of USRP-15sample, (e) BD map of USRP-15 sample, (f) BD map of the base material, (g) (001), (110), and (111) pole figures obtained from examining the axial-section plane of USRP-15 sample, (h) Inverse pole figure along the TD1 direction of USRP-15 sample.
Fig. 5. Surface morphologies of (a) BM, (b) USRP-1, (c) USRP-5, and (d) USRP-15 samples, (e) The corresponding surface roughness of TB8 alloy and USRP samples.
BM | USRP-1 | USRP-5 | USRP-15 | ||||
---|---|---|---|---|---|---|---|
Stress (MPa) | Cycle | Stress (MPa) | Cycle | Stress (MPa) | Cycle | Stress (MPa) | Cycle |
280 | 3000000 | 320 | 3000000 | 320 | 3000000 | 320 | 3000000 |
300 | 2697789 | 340 | 1141318 | 340 | 3000000 | 340 | 1149526 |
280 | 3000000 | 320 | 3000000 | 360 | 1039376 | 320 | 3000000 |
300 | 3000000 | 340 | 3000000 | 340 | 3000000 | 340 | 1369957 |
320 | 189967 | 360 | 621385 | 360 | 1267542 | 320 | 3000000 |
300 | 386545 | 340 | 829649 | 340 | 2082442 | 340 | 3000000 |
280 | 3000000 | 320 | 3000000 | 320 | 3000000 | 360 | 783116 |
300 | 429000 | 340 | 931604 | 340 | 1723102 | 340 | 1149526 |
280 | 3000000 | 320 | 3000000 | 320 | 3000000 | 320 | 3000000 |
Table 4 The stress levels and corresponding fatigue lives (3 × 106 run-out).
BM | USRP-1 | USRP-5 | USRP-15 | ||||
---|---|---|---|---|---|---|---|
Stress (MPa) | Cycle | Stress (MPa) | Cycle | Stress (MPa) | Cycle | Stress (MPa) | Cycle |
280 | 3000000 | 320 | 3000000 | 320 | 3000000 | 320 | 3000000 |
300 | 2697789 | 340 | 1141318 | 340 | 3000000 | 340 | 1149526 |
280 | 3000000 | 320 | 3000000 | 360 | 1039376 | 320 | 3000000 |
300 | 3000000 | 340 | 3000000 | 340 | 3000000 | 340 | 1369957 |
320 | 189967 | 360 | 621385 | 360 | 1267542 | 320 | 3000000 |
300 | 386545 | 340 | 829649 | 340 | 2082442 | 340 | 3000000 |
280 | 3000000 | 320 | 3000000 | 320 | 3000000 | 360 | 783116 |
300 | 429000 | 340 | 931604 | 340 | 1723102 | 340 | 1149526 |
280 | 3000000 | 320 | 3000000 | 320 | 3000000 | 320 | 3000000 |
Sample | Fatigue strength (MPa) (ISO12017) |
---|---|
BM | 295 ± 7 |
USRP-1 | 335 ± 7 |
USRP-5 | 338 ± 8 |
USRP-15 | 335 ± 7 |
Table 5 Fatigue strength calculated by ISO12017 method.
Sample | Fatigue strength (MPa) (ISO12017) |
---|---|
BM | 295 ± 7 |
USRP-1 | 335 ± 7 |
USRP-5 | 338 ± 8 |
USRP-15 | 335 ± 7 |
Fig. 7. Fracture surface morphologies under a maximum stress level of 340 MPa of (a, a1) BM, (b, b1) USRP-1, (c, c1) USRP-5, (d, d1) USRP-15, (e) The schematic figure for calculating the actual stress at the crack initiation point, (f) Graph representing the depth of crack initiation and the corresponding calculated actual stress at the initiation point.
Materials | Thickness (μm) (deformation layer) | The related residual stress | Fatigue test conditions | Fatigue results (improvement degree compared with BM) | Reference | ||
---|---|---|---|---|---|---|---|
Maximum (MPa) | Depth (μm) | Fatigue strength | Fatigue life | ||||
Ti6Al4V | __ | -963 | 550 | Rotating-bending fatigue R=-1 | 39% (1 × 107) | 295-fold | [ |
Ti6Al4V | 335 | -1155 | 650 | Rotating-bendi ng fatigue R=-1 | 22% (1 × 107) | 24.5-fold | [ |
HIP-Ti6Al4V | 20 | -1173 | — | Rotating-bending fatigue R=-1 | 25% (1 × 107) | — | [ |
TC11 | 70 | -898 | 200 | Tension-tension fatigue R=0.1 | 19.3% (5 × 106) | — | [ |
TB8 | — | -1200 | 550 | Rotating-bending fatigue R=-1 | 14.6% (3 × 106) | 4.95-fold | Present work |
Table 6 The effect of USRP on fatigue life of different titanium alloys.
Materials | Thickness (μm) (deformation layer) | The related residual stress | Fatigue test conditions | Fatigue results (improvement degree compared with BM) | Reference | ||
---|---|---|---|---|---|---|---|
Maximum (MPa) | Depth (μm) | Fatigue strength | Fatigue life | ||||
Ti6Al4V | __ | -963 | 550 | Rotating-bending fatigue R=-1 | 39% (1 × 107) | 295-fold | [ |
Ti6Al4V | 335 | -1155 | 650 | Rotating-bendi ng fatigue R=-1 | 22% (1 × 107) | 24.5-fold | [ |
HIP-Ti6Al4V | 20 | -1173 | — | Rotating-bending fatigue R=-1 | 25% (1 × 107) | — | [ |
TC11 | 70 | -898 | 200 | Tension-tension fatigue R=0.1 | 19.3% (5 × 106) | — | [ |
TB8 | — | -1200 | 550 | Rotating-bending fatigue R=-1 | 14.6% (3 × 106) | 4.95-fold | Present work |
Fig. 8. (a) EBSD image with IPF, (b) Schmid factor map, (c) Phase distribution of USRP-5sample after fatigue test under a maximum stress level of 340 MPa.
Fig. 9. (a) EBSD image with BD map of pre-fatigue USRP-15 sample, (b) BD map of post-fatigued USRP-15 sample under a maximum stress level of 340 MPa, (c) and (d) The corresponding grain size distribution figures of pre-fatigue USRP-15 and post-fatigued USRP-15 samples, respectively.
Fig. 10. EBSD image with KAM maps in (a) pre-fatigue USRP-15 sample, (b) post-fatigue USRP-15 sample under a maximum stress level of 340 MPa; KAM distributions in (c) pre-fatigue USRP-15 samples, (d) post-fatigue USRP-15 sample under a maximum stress level of 340 MPa.
Fig. 11. (a) and (b) EBSD images with KAM maps and the corresponding derived fractions for BM and USRP samples, (c) In-depth residual stress distributions in BM and USRP samples, and (d) The surface residual stress of pre- and post- fatigued USRP-5 sample.
Fig. 13. Surface morphologies of BM and USRP samples after fatigue tests under a maximum stress level of 340 MPa of (a, b) BM, (c, d) USRP-1, (e, f) USRP-5 and (g, h) USRP-15 sample.
[1] | N. Ao, D. Liu, X. Zhang, C. Liu, Appl. Surf. Sci. 489 (2019) 595-607. |
[2] | T. Bo, T. Bin, H. Fengbo, Y. Guanjun, L. Jinshan, J. Alloys. Compd. 565 (2013) 1-5. |
[3] | J. Sun, Z. Zhang, M. Zhang, F. Jiang, M. Ding, J. Alloys. Compd. 663 (2016) 769-774. |
[4] | X. Huang, X. Li, Y. Li, Mater. Res. Express 6 (2019), 0865e0868. |
[5] | Q. He, Z. Du, X. Wang, X. Cui, F. Liu, Y. Chen, J. Cheng, X. Zhao, Y. Chen, Mater. Res. Express 6(2019). |
[6] | B. Qian, L. Li, J. Sun, R. Wu, M. Zhang, J. Mater. Eng. Perform. 28 (2019) 2816-2825. |
[7] | A. Cox, S. Herbert, J.P. Villain-Chastre, S. Turner, M. Jackson, Int. J. Fatigue 124 (2019) 26-33. |
[8] | R. Sun, Z. Che, Z. Cao, S. Zou, J. Wu, W. Guo, Y. Zhu, Surf. Coat. Tech. 383 (2020), 125284. |
[9] | A. Junet, A. Messager, X. Boulnat, A. Weck, E. Boller, L. Helfen, J.Y. Buffiere, Scripta Mater. 171 (2019) 87-91. |
[10] | Y. Khaburskyi, Z. Slobodyan, M. Hredil, H. Nykyforchyn, Int. J. Fatigue 127 (2019) 217-221. |
[11] | Y.B. Lei, Z.B. Wang, J.L. Xu, K. Lu, Acta Mater. 168 (2019) 133-142. |
[12] | J. Yaacoub, Y. Wu, W. Abuzaid, D. Canadinc, H. Sehitoglu, Scripta Mater 171 (2019) 112-117. |
[13] | J. Long, Q. Pan, N. Tao, M. Dao, S. Suresh, L. Lu, Acta Mater. 166 (2019) 56-66. |
[14] | Y. Wu, S. Li, M. Kang, Y. Li, Y. Liu, H. Gao, B. Sun, J. Wang, Scripta Mater 171 (2019) 36-41. |
[15] |
P. Zhao, B. Chen, J. Kelleher, G. Yuan, B. Guan, X. Zhang, S. Tu, Acta Mater. 174 (2019) 29-42.
DOI URL |
[16] | Q. Wang, C. Xin, Q. Sun, L. Xiao, J. Sun, Mater. Sci. Eng.: A 702 (2017) 125-132. |
[17] | A.I. Dekhtyar, B.N. ordyuk, D.G. Savvakin, V.I. Bondarchuk, I.V. Moiseeva, N.I. Khripta, Mater. Sci. Eng.: A 641 (2015) 348-359. |
[18] | S. Kumar, K. Chattopadhyay, V. Singh, J. Alloys. Compd. 724 (2017) 187-197. |
[19] |
Y. Liu, X. Zhao, D. Wang, Mater. Sci. Eng.: A 600 (2014) 21-31.
DOI URL |
[20] |
T. Liu, J. Lin, Y. Guan, Z. Xie, L. Zhu, J. Zhai, Ultrasonics 89 (2018) 26-33.
DOI URL PMID |
[21] | H. Razavi, M. Keymanesh, I.F. Golpayegani, Int. J. Adv. Manuf. Tech. 103 (2019) 2725-2737. |
[22] | D. Liu, D. Liu, X. Zhang, C. Liu, N. Ao, Mater. Sci. Eng.: A 726 (2018) 69-81. |
[23] | W. Zhao, D. Liu, X. Zhang, Y. Zhou, R. Zhang, H. Zhang, C. Ye, Int. J. Fatigue 121 (2019) 30-38. |
[24] | M. Zhang, Z. Liu, J. Deng, M. Yang, Q. Dai, T. Zhang, Appl. Math. Model. 76 (2019) 800-831. |
[25] | X. Xu, D. Liu, X. Zhang, C. Liu, D. Liu, W. Zhang, Int. J. Fatigue 125 (2019) 237-248. |
[26] |
C. Liu, D. Liu, X. Zhang, D. Liu, A. Ma, N. Ao, X. Xu, J. Mater. Sci. Technol. 35 (2019) 1555-1562.
DOI URL |
[27] | X. Zhao, G. Xue, Y. Liu, Results Phys. 7 (2017) 1845-1851. |
[28] | C. Liu, D. Liu, X. Zhang, G. He, X. Xu, N. Ao, A. Ma, D. Liu, Surf. Coat. Tech. 370 (2019) 24-34. |
[29] | T. Gao, H. Xue, Z. Sun, D. Retraint, Mater. Sci. Eng.: A 776 (2020), 138989. |
[30] | L. Sasaki, G. Hénaff, M. Arzaghi, P. Villechaise, J. Delfosse, Mater. Sci. Eng.: A 707 (2017) 253-258. |
[31] |
K. Osaki, S. Kikuchi, Y. Nakai, M.O. Kawabata, K. Ameyama, Mater. Sci. Eng.: A 773 (2020), 138892.
DOI URL |
[32] |
A. Misra, X. Zhang, D. Hammon, R.G. Hoagland, Acta Mater. 53 (2005) 221-226.
DOI URL |
[33] | S. Bagherifard, N. Beretta, S. Monti, M. Riccio, M. Bandini, M. Guagliano, Mater. Design 145 (2018) 28-41. |
[34] | N.P. Gurao, S. Suwas, Appl. Phys. Lett. 94 (2009), 191902. |
[35] |
X.C. Liu, H.W. Zhang, K. Lu, Science 342 (2013) 337.
URL PMID |
[36] | Y. Liu, M. Li, Mater. Sci. Eng.: A 669 (2016) 7-13. |
[37] | Z. Han, L. Ji, J. Cai, H. Zou, Z. Wang, Q. Guan, J. Nanomater. 2013 (2013) 1-6. |
[38] |
K. Lu, L. Lu, S. Suresh, Science 324 (2009) 349-352.
URL PMID |
[39] | Y.G. Liu, M.Q. Li, H.J. Liu, J. Alloys. Compd. 685 (2016) 186-193. |
[40] | A. Amanov, R. Umarov, Appl. Surf. Sci. 441 (2018) 515-529. |
[41] |
Q. Wang, Q. Sun, L. Xiao, J. Sun, Mater. Sci. Eng.: A 649 (2016) 359-368.
DOI URL |
[42] | C.W. Shao, P. Zhang, Y.K. Zhu, Z.J. Zhang, J.C. Pang, Z.F. Zhang, Acta Mater. 134 (2017) 128-142. |
[43] | G. Li, S.G. Qu, Y.X. Pan, X.Q. Li, Appl. Surf. Sci. 389 (2016) 324-334. |
[44] | S.A. Martinez, S. Sathish, M.P. Blodgett, S. Mall, S. Namjoshi, Mater. Sci. Eng.: A 399 (2005) 58-63. |
[45] | X. Zhang, D. Liu, Int. J. Fatigue 31 (2009) 889-893. |
[46] | J. Li, Y. Lu, H. Zhang, L. Xin, Tribol. Int. 81 (2015) 215-222. |
[47] | I. Bantounas, D. Dye, T.C. Lindley, Acta Mater. 57 (2009) 3584-3595. |
[48] | K. Tanaka, T. Mura, J. Appl. Mech. 48 (1981) 97-103. |
[49] | F. Briffod, A. Bleuset, T. Shiraiwa, M. Enoki, Acta Mater. 177 (2019) 56-67. |
[50] | B.N. Mordyuk, G.I. Prokopenko, Y.V. Milman, M.O. Iefimov, A.V. Sameljuk, Mater. Sci. Eng.: A 563 (2013) 138-146. |
[51] | Y.B. Wang, B.Q. Li, M.L. Sui, S.X. Mao, Appl. Phys. Lett. 92 (2008) 3. |
[52] | A. Vinogradov, T. Kawaguchi, Y. Kaneko, S. Hashimoto, Mater. Trans. 53 (2012) 101-108. |
[53] | H.W. Hoppel, Z.M. Zhou, H. Mughrabi, R.Z. Valiev, Philos. Mag. A-Phys.Condens. Matter Struct. Defect Mech. Prop. 82 (2002) 1781-1794. |
[54] | Z. Yan, D. Wang, X. He, W. Wang, H. Zhang, P. Dong, C. Li, Y. Li, J. Zhou, Z. Liu, L. Sun, Mater. Sci. Eng.: A 723 (2018) 212-220. |
[55] | J. Li, J. Zhou, A. Feng, S. Huang, X. Meng, Y. Sun, Y. Huang, X. Tian, Opt. Laser Technol. 118 (2019) 183-191. |
[56] | M. Kattoura, S.R. Mannava, D. Qian, V.K. Vasudevan, Int. J. Fatigue 102 (2017) 121-134. |
[57] | S. Bagherifard, Adv. Eng. Mater. 21 (2019), 1801140. |
[58] |
S. Bagherifard, D.J. Hickey, S. Fintova, F. Pastorek, I. Fernandez-Pariente, M. Bandini, T.J. Webster, M. Guagliano, Acta Biomater. 66 (2018) 93-108.
URL PMID |
[59] |
S. Bagherifard, M.F. Molla, D. Kajanek, R. Donnini, B. Hadzima, M. Guagliano, Acta Biomater. 98 (2019) 88-102.
DOI URL PMID |
[60] | S.D. Lee, T.W. Kim, Y.J. Cho, Tribol. Lett. 36 (2009) 269-276. |
[61] |
S. Suresh, Science 292 (2001) 2447-2451.
URL PMID |
[62] |
K. Zhang, Z.B. Wang, K. Lu, Mater. Res. Lett. 5 (2016) 258-266.
DOI URL |
[63] | T. Roland, D. Retraint, K. Lu, J. Lu, Scripta Mater 54 (2006) 1949-1954. |
[64] | G. Li, S.G. Qu, S. Guan, F.W. Wang, Surf. Coat. Tech. 379 (2019) 9. |
[65] |
G. Li, S.G. Qu, M.X. Xie, Z.J. Ren, X.Q. Li, Materials 10 (2017) 15.
DOI URL |
[66] |
X.H. Zhao, G.L. Xue, Y. Liu, Results Phys. 7 (2017) 1845-1851.
DOI URL |
[1] | Chenfan Yu, Peng Zhang, Zhefeng Zhang, Wei Liu. Microstructure and fatigue behavior of laser-powder bed fusion austenitic stainless steel [J]. J. Mater. Sci. Technol., 2020, 46(0): 191-200. |
[2] | A.G. Wang, X.H. An, J. Gu, X.G. Wang, L.L. Li, W.L. Li, M. Song, Q.Q. Duan, Z.F. Zhang, X.Z. Liao. Effect of grain size on fatigue cracking at twin boundaries in a CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2020, 39(0): 1-6. |
[3] | Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling [J]. J. Mater. Sci. Technol., 2020, 40(0): 88-98. |
[4] | Chengsong Liu, Daoxin Liu, Xiaohua Zhang, Dan Liu, Amin Ma, Ni Ao, Xingchen Xu. Improving fatigue performance of Ti-6Al-4V alloy via ultrasonic surface rolling process [J]. J. Mater. Sci. Technol., 2019, 35(8): 1555-1562. |
[5] | Xumin Zhu, Congyang Gong, Yun-Fei Jia, Runzi Wang, Chengcheng Zhang, Yao Fu, Shan-Tung Tu, Xian-Cheng Zhang. Influence of grain size on the small fatigue crack initiation and propagation behaviors of a nickel-based superalloy at 650 °C [J]. J. Mater. Sci. Technol., 2019, 35(8): 1607-1617. |
[6] | Yafei Wang, Rui Chen, Xu Cheng, Yanyan Zhu, Jikui Zhang, Huaming Wang. Effects of microstructure on fatigue crack propagation behavior in a bi-modal TC11 titanium alloy fabricated via laser additive manufacturing [J]. J. Mater. Sci. Technol., 2019, 35(2): 403-408. |
[7] | Ying Wu, Jianrong Liu, Hao Wang, Shaoxuan Guan, Rui Yang, Hongfu Xiang. Effect of stress ratio on very high cycle fatigue properties of Ti-10V-2Fe-3Al alloy with duplex microstructure [J]. J. Mater. Sci. Technol., 2018, 34(7): 1189-1195. |
[8] | Lianghua Lin, Zhiyi Liu, Wenjuan Liu, Yaru Zhou, Tiantian Huang. Effects of Ag Addition on Precipitation and Fatigue Crack Propagation Behavior of a Medium-Strength Al-Zn-Mg Alloy [J]. J. Mater. Sci. Technol., 2018, 34(3): 534-540. |
[9] | Zhang Zhefeng, Li Linlin, Zhang Zhenjun, Zhang Peng. Twin boundary: Controllable interface to fatigue cracking. [J]. J. Mater. Sci. Technol., 2017, 33(7): 603-606. |
[10] | S.M. Yin, S.X. Li. Low-cycle Fatigue Behaviors of an As-extruded Mg-12%Gd-3%Y-0.5%Zr Alloy [J]. J. Mater. Sci. Technol., 2013, 29(8): 775-780. |
[11] | Z.M. Song, L.M. Lei, B. Zhang, X. Huang, G.P. Zhang. Microstructure Dependent Fatigue Cracking Resistance Ti–6.5Al–3.5Mo–1.5Zr–0.3Si Alloy [J]. J Mater Sci Technol, 2012, 28(7): 614-621. |
[12] | Zhenzhong CHEN, Ping HE, Liqing CHEN. The Role of Particles in Fatigue Crack Propagation of Aluminum Matrix Composites and Casting Aluminum Alloys [J]. J Mater Sci Technol, 2007, 23(02): 213-216. |
[13] | Yongxiang ZHAO. Size Evolution of the Surface Short Fatigue Cracks of 1Cr18Ni9Ti Weld Metal [J]. J Mater Sci Technol, 2003, 19(02): 129-132. |
[14] | HE Shiyu WANG Zhongguang LI Qingjian ZHANG Yun FENG Xiaozeng State Key Laboratory for Fatigue and Fracture of Materials,Institute of Metal Research,Academia Sinica,Shenyang,110015,ChinaDept.of Materials Science and Engineering,Harbin Institute of Technolo. Fatigue Crack Growth of Al-Li Alloy 2091 in 3.5% NaCl Solution and at 130℃ [J]. J Mater Sci Technol, 1992, 8(5): 359-364. |
[15] | LEI Tingquan LIN Guangyong ** Dept.of Metals and Technology,Harbin Institute of Technology,Harbin,150006,China+ To whom correspondence should be addressed. Fatigue Crack Propagation in Plain Carbon Dual-phase Steel [J]. J Mater Sci Technol, 1992, 8(4): 249-254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||