J. Mater. Sci. Technol. ›› 2021, Vol. 69: 200-211.DOI: 10.1016/j.jmst.2020.08.033
• Research Article • Previous Articles Next Articles
Jiang Bi, Zhenglong Lei*(), Yanbin Chen*(
), Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang
Received:
2020-06-08
Revised:
2020-07-06
Accepted:
2020-07-06
Published:
2021-04-10
Online:
2021-05-15
Contact:
Zhenglong Lei,Yanbin Chen
About author:
chenyb@hit.edu.cn (Y. Chen).Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion[J]. J. Mater. Sci. Technol., 2021, 69: 200-211.
Fig. 2. The crystal size and orientation of AlMgSiScZr alloy fabricated at different scanning strategies: (a) SM-67°, (b) SM-90°, (c) DM-0°, (d) DM-67°, (e) DM-0°-500 mm/s and (f) DM-67°-500 mm/s.
Specimen number | Scanning strategy | Laser power (W) | Scanning speed (mm/s) |
---|---|---|---|
1 | SM-67° | 160 | 200 |
2 | SM-90° | 160 | 200 |
3 | DM-0° | 160 | 200 |
4 | DM-67° | 160 | 200 |
5 | DM-0° | 200 | 500 |
6 | DM-67° | 200 | 500 |
Table 1 The specimen number and process parameters of tensile samples fabricated at different scanning strategies.
Specimen number | Scanning strategy | Laser power (W) | Scanning speed (mm/s) |
---|---|---|---|
1 | SM-67° | 160 | 200 |
2 | SM-90° | 160 | 200 |
3 | DM-0° | 160 | 200 |
4 | DM-67° | 160 | 200 |
5 | DM-0° | 200 | 500 |
6 | DM-67° | 200 | 500 |
Fig. 3. The tensile properties of AlMgSiScZr samples fabricated at various scanning strategies: (a) true stress-strain curves and (b) strength and elongation.
Fig. 4. The fracture appearances of AlMgSiScZr alloy fabricated at various scanning strategies: (a) SM-67°, (b) SM-90°, (c) DM-0°, (d) DM-67°, (e) DM-0°-500 mm/s and (f) DM-67°-500 mm/s.
Fig. 5. Tensile properties and fracture morphologies of AlMgSiScZr alloy (SM-67°) tested at different temperatures: (a) true stress-strain curves, (b) strength and elongation, (c) fracture morphologies obtained at 473 K, (d) 523 K and (e) 573 K.
Fig. 6. The microstructure of AlMgSiScZr alloy (No. 1) treated at 325 ℃ and different aging times: (a, j) 0 h, (b) 2 h, (c) 4 h, (d, k) 6 h, (e) 8 h, (f) 10 h, (g, l) 12 h, (h) 18 h and (i, m) 24 h.
Fig. 7. Tensile properties of AlMgSiScZr alloy (No. 1) treated at 325 ℃ and different aging time: (a) true stress-strain curves, (b) strength and elongation.
Fig. 14. Grain size distribution of fine equiaxed crystals obtained at different aging times: (a), (e) 0 h; (b), (f) 6 h; (c), (g) 12 h and (d), (h) 24 h.
[1] |
Y.X. Lai, W. Fan, M.J. Yin, C.L. Wu, J.H. Chen, J. Mater. Sci. Technol. 41 (2020) 127-138.
DOI URL |
[2] |
Z.T. Liu, B.Y. Wang, C. Wang, M. Zha, G.J. Liu, Z.Z. Yang, J.G. Wang, J.H. Li, H.Y. Wang, J. Mater. Sci. Technol. 41 (2020) 178-186.
DOI URL |
[3] |
Q. Lu, K. Li, H.N. Chen, M.J. Yang, X.Y. Lan, T. Yang, S.H. Liu, M. Song, L.F. Cao, Y. Du, J. Mater. Sci. Technol. 41 (2020) 139-148.
DOI URL |
[4] |
M.L. Montero-Sistiaga, R. Mertens, B. Vrancken, X.B. Wang, B.V. Hooreweder, J.P. Kruth, J.V. Humbeeck, J. Mater. Process. Technol. 238 (2016) 437-445.
DOI URL |
[5] |
L.Y. Yuan, L.M. Peng, J.Y. Han, B.L. Liu, Y.J. Wu, J. Chen, J. Mater. Sci. Technol. 35 (2019) 1017-1026.
DOI URL |
[6] |
Q.J. Zheng, L.L. Zhang, H.X. Jiang, J.Z. Zhao, J. He, J. Mater. Sci. Technol. 47 (2020) 142-151.
DOI URL |
[7] |
G. Lu, S. Nie, J.J. Wang, Y. Zhang, T.H. Wu, Y.J. Liu, C.M. Liu, J. Mater. Sci. Technol. 40 (2020) 107-112.
DOI URL |
[8] |
L. Wu, Y.G. Li, X.F. Li, N.H. Ma, H.W. Wang, J. Mater. Sci. Technol. 46 (2020) 44-49.
DOI URL |
[9] | A.V. Pozdniakov, R.Yu. Barkov, J. Mater. Sci. Technol. 36 (2020) 1-6. |
[10] |
R.L. Ma, C.Q. Peng, Z.Y. Cai, R.C. Wang, Z.R. Zhou, X.G. Li, X.Y. Cao, J. Alloys. Compd. 815 (2020), 152422.
DOI URL |
[11] |
K.X. Wang, D.F. Yin, Y.C. Zhao, A. Atrens, M.C. Zhao, J. Mater. Res. Technol. 9 (2020) 5077-5089.
DOI URL |
[12] |
H. Zhang, D.D. Gu, D.H. Dai, C.L. Ma, Y.X. Li, R.L. Peng, S.H. Li, G. Liu, B.Q. Yang, Mater. Sci. Eng. A 788 (2020), 139593.
DOI URL |
[13] |
Y. Wang, H.Y. Liu, X.C. Ma, R.Z. Wu, J.F. Sun, L.G. Hou, J.H. Zhang, X.L. Li, M.L. Zhang, Mater. Charact. 154 (2019) 241-247.
DOI URL |
[14] |
L. Zhou, H. Pan, H. Hyer, S. Park, Y.L. Bai, B. McWilliams, K. Cho, Y. Sohn, Scripta. Mater. 158 (2019) 24-28.
DOI |
[15] | D.C. Ren, S.J. Li, H. Wang, W.T. Hou, Y.L. Hao, W. Jin, R. Yang, R. D.K.Misra, L.E. Murr, J. Mater. Sci. Technol. 35 (2019) 285-294. |
[16] |
N. Li, S. Huang, G.D. Zhang, R.Y. Qin, W. Liu, H.P. Xiong, G.Q. Shi, J. Blackburn, J. Mater. Sci. Technol. 35 (2019) 242-269.
DOI URL |
[17] | G. Chen, Y.H. Xu, P.C.L. Kwok, L.F. Kang, Addit. Manuf. 34 (2020), 101209. |
[18] |
Y.J. Liu, S.J. Li, W.T. Hou, S.C. Wang, Y.L. Hao, R. Yang, T.B. Sercombe, L.C. Zhang, J. Mater. Sci. Technol. 32 (2016) 505-508.
DOI URL |
[19] | L. Safai, J.S. Cuellar, G. Smit, A.A. Zadpoor, Addit. Manuf. 28 (2019) 87-97. |
[20] | A. Paolini, S. Kollmannsberger, E. Rank, Addit. Manuf. 30 (2019), 100894. |
[21] | L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, J. Mater. Sci. Technol. 28 (2012) 1-14. |
[22] |
L.C. Zhang, H. Attar, Adv. Eng. Mater. 18 (2016) 463-475.
DOI URL |
[23] |
M. Lowther, S. Louth, A. Davey, A. Hussain, P. Ginestra, L. Carter, N. Eisenstein, L. Grover, S. Cox, Addit. Manuf. 28 (2019) 565-584.
DOI |
[24] |
E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, Prog. Mater. Sci. 74 (2015) 401-477.
DOI URL |
[25] |
T. Kimura, T. Nakamoto, Mater. Des. 89 (2016) 1294-1301.
DOI URL |
[26] |
N. Takata, H. Kodaira, K. Sekezawa, A. Suzuki, M. Kobashi, Mater. Sci. Eng. A 704 (2017) 218-228.
DOI URL |
[27] |
Y.J. Liu, Z. Liu, Y. Jiang, G.W. Wang, Y. Yang, L.C. Zhang, J. Alloys Compd. 735 (2018) 1414-1421.
DOI URL |
[28] |
H. Zhang, H.H. Zhu, X.J. Nie, J. Yin, Z.H. Hu, X.Y. Zeng, Scripta. Mater. 134 (2017) 6-10.
DOI URL |
[29] |
J. Bi, Z.L. Lei, Y.B. Chen, X. Chen, X.K. Qin, Z. Tian, Opt. Laser Technol. 118 (2019) 132-139.
DOI URL |
[30] | N. Takata, M.L. Liu, H. Kodaira, A. Suzuki, M. Kobashi, Addit. Manuf. 33 (2020), 101152. |
[31] |
Y. Yang, Y. Chen, J. Zhang, X. Gu, P. Qin, N. Dai, X. Li, J.P. Kruth, L.C. Zhang, Mater. Des. 146 (2018) 239-248.
DOI URL |
[32] | X. Qi, N. Takata, A. Suzuki, M. Kobashi, M. Kato, Addit. Manuf. 35 (2020), 101308. |
[33] |
J.L. Zhang, B. Song, Q.S. Wei, D. Bourell, Y.S. Shi, J. Mater. Sci. Technol. 35 (2019) 270-284.
DOI URL |
[34] |
J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Polock, Nature 549 (2017) 365-369.
DOI PMID |
[35] | C. Galy, E.L. Guen, E. Lacoste, C. Arvieu, Addit. Manuf. 22 (2018) 165-175. |
[36] |
T. Qi, H.H. Zhu, H. Zhang, J. Yin, L. Ke, X.Y. Zeng, Mater. Des. 135 (2017) 257-266.
DOI URL |
[37] | S.Z. Uddin, L.E. Murr, C.A. Terrazas, P. Morton, D.A. Roberson, R.B. Wicker, Addit. Manuf. 22 (2018) 405-415. |
[38] |
X.J. Nie, H. Zhang, H.H. Zhu, Z.H. Hu, L.D. Ke, X.Y. Zeng, J. Alloys. Compd. 764 (2018) 977-986.
DOI URL |
[39] |
A.B. Spierings, K. Dawson, T. Heeling, P.J. Uggowitzer, R. Schäublin, F. Palm, K. Wegener, Mater. Des. 115 (2017) 52-63.
DOI URL |
[40] | A.B. Spierings, K. Dawson, P. Dumitraschkewitz, S. Pogatscher, K. Wegener, Addit. Manuf. 22 (2018) 173-181. |
[41] |
Y.J. Shi, K. Yang, S.K. Kairy, F. Palm, X.H. Wu, P.A. Rometsch, Mater. Sci. Eng. A 732 (2018) 41-52.
DOI URL |
[42] |
A.B. Spierings, K. Dawson, P.J. Uggowitzer, K. Wegener, Mater. Des. 140 (2018) 134-143.
DOI URL |
[43] |
A.B. Spierings, K. Dawson, K. Kern, F. Palm, K. Wegener, Mater. Sci. Eng. A 701 (2017) 264-273.
DOI URL |
[44] |
Y.C. Tzeng, C.Y. Chung, H.C. Chien, Mater. Lett. 228 (2018) 270-272.
DOI URL |
[45] |
Q.B. Jia, P. Rometsch, P. Kürnsteiner, Q. Chao, A.J. Huang, M. Weyland, L. Bourgeois, X.H. Wu, Acta Mater. 171 (2019) 108-118.
DOI URL |
[46] |
Q.B. Jia, F. Zhang, P. Rometsch, J.W. Li, J. Mata, M. Weyland, L. Bourgeois, M.L. Sui, X.H. Wu, Acta Mater. 193 (2020) 239-251.
DOI URL |
[47] |
Z.L. Lei, J. Bi, Y.B. Chen, X. Chen, X.K. Qin, Z. Tian, Powder Technol. 356 (2019) 594-606.
DOI URL |
[48] |
R.D. Li, M.B. Wang, Z.M. Li, P. Cao, T.C. Yuan, H.B. Zhu, Acta Mater. 193 (2020) 83-98.
DOI URL |
[49] |
R.D. Li, H. Chen, H.B. Zhu, M.B. Wang, C. Chen, T.C. Yuan, Mater. Des. 168 (2019), 107668.
DOI URL |
[50] |
J. Bi, Z.L. Lei, Y.B. Chen, X. Chen, Z. Tian, X.K. Qin, J.W. Liang, X.R. Zhang, Intermetallics 123 (2020), 106822.
DOI URL |
[51] |
J. Bi, Z.L. Lei, Y.B. Chen, X. Chen, Z. Tian, J.W. Liang, X.K. Qin, X.R. Zhang, Mater. Sci. Eng. A 774 (2020), 138931.
DOI URL |
[52] |
H. Zhang, D.D. Gu, D.H. Dai, C.L. Ma, Y.X. Li, M.Z. Cao, S.H. Li, Appl. Surf. Sci. 509 (2020), 145330.
DOI URL |
[53] |
P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino, J. Mater. Sci. Technol. 36 (2020) 18-26.
DOI URL |
[54] |
J. Bi, Z.L. Lei, Y.B. Chen, X. Chen, Z. Tian, J.W. Liang, X.R. Zhang, X.K. Qin, Mater. Sci. Eng. A 768 (2019), 138478.
DOI URL |
[55] |
X.J. Nie, H. Zhang, H.H. Zhu, Z.H. Hu, L.D. Ke, X.Y. Zeng, J. Mater. Process. Technol. 256 (2018) 69-77.
DOI URL |
[56] |
K.G. Prashanth, S. Scudino, J. Eckert, Acta Mater. 126 (2017) 25-35.
DOI URL |
[57] |
D.D. Gu, H. Zhang, D.H. Dai, C.L. Ma, H.M. Zhang, Y.X. Li, S.H. Li, Corros. Sci. 170 (2020), 108657.
DOI URL |
[58] |
K.E. Knipling, D.N. Seidman, D.C. Dunand, Acta Mater. 59 (2011) 943-954.
DOI URL |
[59] |
B. Forbord, W. Lefebvre, F. Danoix, H. Hallem, K. Marthinsen, Scripta. Mater. 51 (2004) 333-337.
DOI URL |
[60] |
J.Y. Zhang, T. Hu, D.Q. Yi, H.X. Wang, B. Wang, J. Rare. Earth 37 (2019) 668-672.
DOI URL |
[61] |
Y. Buranova, V. Kulitskiy, M. Peterlechner, A. Mogucheva, R. Kaibyshev, S.V. Divinski, G. Wilde, Acta Mater. 124 (2017) 210-224.
DOI URL |
[62] |
A. Tolley, V. Radmilovic, U. Dahmen, Scripta. Mater. 52 (2005) 621-625.
DOI URL |
[63] |
A. Tridello, J. Fiocchi, C.A. Biffi, G. Chiandussi, M. Rossetto, A. Tuissi, D.S. Paolino, Int. J. Fatigue 124 (2019) 435-443.
DOI URL |
[64] |
F. Alghamdi, X. Song, A. Hadadzadeh, B. Shalchi-Amirkhiz, M. Mohammadi, M. Haghshenas, Mater. Sci. Eng. A 783 (2020), 139296.
DOI URL |
[65] |
K.V. Yang, Y.J. Shi, F. Palm, X.H. Wu, P. Rometsch, Scripta. Mater. 145 (2018) 113-117.
DOI URL |
[66] |
O.N. Senkov, M.R. Shagiev, S.V. Senkova, D.B. Miracle, Acta Mater. 56 (2008) 3723-3738.
DOI URL |
[67] |
C.M. Zhang, Y. Jiang, F.H. Cao, T. Hu, Y.R. Wang, D.F. Yin, J. Mater. Sci. Technol. 35 (2019) 930-938.
DOI URL |
[68] |
L. Liu, J.T. Jiang, B. Zhang, W.Z. Shao, L. Zhen, J. Mater. Sci. Technol. 35 (2019) 962-971.
DOI |
[69] |
A.D. Luca, D.C. Dunand, D.N. Seidman, Acta Mater. 144 (2018) 80-91.
DOI URL |
[70] |
K.L. Kendig, D.B. Miracle, Acta Mater. 50 (2002) 4165-4175.
DOI URL |
[71] |
M.E. Krug, Z.G. Mao, D.N. Seidman, D.C. Dunand, Acta Mater. 79 (2014) 382-395.
DOI URL |
[72] |
X. Liu, J.L. Xue, Z.C. Guo, C. Zhang, J. Mater. Sci. Technol. 35 (2019) 1422-1431.
DOI URL |
[73] |
K. Huang, K. Marthinsen, Q.L. Zhao, R.E. Logé, Prog. Mater. Sci. 92 (2018) 284-359.
DOI URL |
[74] |
J.Y. Zhang, H.T. Zhao, J.H. Zhu, B. Wang, D.Q. Yi, Electr. Pow. Syst. Res. 168 (2019) 1-7.
DOI URL |
[75] |
L. Liu, X.Y. Cui, J.T. Jiang, B. Zhang, K. Nomoto, L. Zhen, S.P. Ringer, Mater. Charact. 157 (2019), 109898.
DOI URL |
[76] |
J.D. Robson, Acta Mater. 52 (2004) 1409-1421.
DOI URL |
[77] |
J.Y. Jiang, F. Jiang, M.H. Zhang, Z.Q. Tang, M.M. Tong, J. Alloys Compd. 831 (2020), 154856.
DOI URL |
[78] |
C.B. Fuller, J.L. Murray, D.N. Seidman, Acta Mater. 53 (2005) 5401-5413.
DOI URL |
[79] | P. Kürnsteiner, P. Bajaj, A. Gupta, M.B. Wilms, A. Weisheit, X.S. Li, C. Leinenbach, B. Gault, E.A. Jägle, D. Raabe, Addit. Manuf. 32 (2020), 100910. |
[1] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[2] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[3] | Binbin Zhang, Weichen Xu, Qingjun Zhu, Baorong Hou. Scalable, fluorine free and hot water repelling superhydrophobic and superoleophobic coating based on functionalized Al2O3 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 66(0): 74-81. |
[4] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
[5] | Yongsheng Liu, Jiaying Jin, Tianyu Ma, Baixing Peng, Xinhua Wang, Mi Yan. Promoting the La solution in 2:14: 1-type compound: Resultant chemical deviation and microstructural nanoheterogeneity [J]. J. Mater. Sci. Technol., 2021, 62(0): 195-202. |
[6] | Jing Chen, Liang Wu, Xingxing Ding, Qiang Liu, Xu Dai, Jiangfeng Song, Bin Jiang, Andrej Atrens, Fusheng Pan. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2021, 64(0): 10-20. |
[7] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
[8] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
[9] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[10] | Huajing Xiong, Jianan Fu, Jinyao Li, Rashad Ali, Hong Wang, Yifan Liu, Hua Su, Yuanxun Li, Woon-Ming Lau, Nasir Mahmood, Chunhong Mu, Xian Jian. Strain-regulated sensing properties of α-Fe2O3 nano-cylinders with atomic carbon layers for ethanol detection [J]. J. Mater. Sci. Technol., 2021, 68(0): 132-139. |
[11] | Xutong Yang, Xiao Zhong, Junliang Zhang, Junwei Gu. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance [J]. J. Mater. Sci. Technol., 2021, 68(0): 209-215. |
[12] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[13] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
[14] | Xuewei Yan, Qingyan Xu, Guoqiang Tian, Quanwei Liu, Junxing Hou, Baicheng Liu. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67(0): 36-49. |
[15] | Yuting Wu, Chong Li, Xingchuan Xia, Hongyan Liang, Qiqi Qi, Yongchang Liu. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'-strengthened superalloys [J]. J. Mater. Sci. Technol., 2021, 67(0): 95-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||