J. Mater. Sci. Technol. ›› 2020, Vol. 45: 215-229.DOI: 10.1016/j.jmst.2019.11.011
• Research Article • Previous Articles Next Articles
P.G. Kubendran Amosa,*(), Ramanathan Perumala,b, Michael Selzera,b, Britta Nestlera,b
Received:
2019-08-13
Revised:
2019-09-27
Accepted:
2019-11-01
Published:
2020-05-15
Online:
2020-05-27
Contact:
P.G. Kubendran Amos
P.G. Kubendran Amos, Ramanathan Perumal, Michael Selzer, Britta Nestler. Multiphase-field modelling of concurrent grain growth and coarsening in complex multicomponent systems[J]. J. Mater. Sci. Technol., 2020, 45: 215-229.
Parameter | Symbol | Value |
---|---|---|
Grid size | Δx = Δy (= Δz) | 1.0 |
Time-step width | Δt | 0.02 |
Interface-width parameter | ? | 4 ×Δx |
Relaxation parameter | τ | 1.0 |
Table 1 List of simulation parameters.
Parameter | Symbol | Value |
---|---|---|
Grid size | Δx = Δy (= Δz) | 1.0 |
Time-step width | Δt | 0.02 |
Interface-width parameter | ? | 4 ×Δx |
Relaxation parameter | τ | 1.0 |
Fig. 1. Microstructural evolution of single-, two- and three-phase polycrystalline structures indicated as ‘Pure’, ‘C2P2’, and ‘C3P’, respectively. Two duplex microstructures of binary (C2P2) and ternary (C3P2) systems are considered for analysing the effect of number of components.
Parameter | Symbol | Value |
---|---|---|
Grain boundary energy | γΘΘ Θ∈{α,β,γ} | 1.0 |
Interphase energy | γΘδ Θ,δ∈{α,β,γ} | 1.0 |
Bulk diffusivity | Dα = Dβ (=Dγ) ≡D | 1.0 |
Table 2 List of material parameters.
Parameter | Symbol | Value |
---|---|---|
Grain boundary energy | γΘΘ Θ∈{α,β,γ} | 1.0 |
Interphase energy | γΘδ Θ,δ∈{α,β,γ} | 1.0 |
Bulk diffusivity | Dα = Dβ (=Dγ) ≡D | 1.0 |
Phase | Independent component-i | Independent component-j |
---|---|---|
(Binary) | ||
Phase-α | 0.1 | - |
Phase-β | 0.9 | - |
(Ternary) | ||
Phase-α | 0.05 | 0.05 |
Phase-β | 0.05 | 0.9 |
Phase-γ | 0.9 | 0.05 |
Table 3 Equilibrium concentration of binary and ternary systems.
Phase | Independent component-i | Independent component-j |
---|---|---|
(Binary) | ||
Phase-α | 0.1 | - |
Phase-β | 0.9 | - |
(Ternary) | ||
Phase-α | 0.05 | 0.05 |
Phase-β | 0.05 | 0.9 |
Phase-γ | 0.9 | 0.05 |
Fig. 2. Monotonic decrease in the total number of grains during the evolution of single-phase, duplex and triplex microstructures of binary and ternary systems.
Fig. 3. Temporal increase in the average grain size of the polycrystalline systems with chemically-identical and phase-associated grains during the microstructural transformations.
Fig. 4. Change in the average grain size of duplex microstructure with equal and unequal phase-fraction pertaining to binary and ternary systems with time. The binary and ternary duplex microstructures with equal phase-fractions are Correspondingly represented by ‘C2-S2’ and ‘C3-S2’, while ‘C2-S1’ and ‘C3-S1’ respectively denotes the duplex systems with unequal volume-fractions of phases.
Fig. 6. Grains of the binary and ternary duplex microstructures are distinguished based on the phases and the increase in its average size during the transformation is plotted with time.
Fig. 7. The disparity in the rate of increase in average grain size of ternary duplex microstructure with equal phase-fraction due to the difference in bulk diffusivity of the phases.
Fig. 8. The marginal difference in the transformation kinetics of binary and ternary duplex systems with an independent component-i of identical diffusivity.
Fig. 9. Microstructural transformation of ternary three-phase polycrystalline systems with equal and unequal phase-fractions. Two setups with varying volume fraction of the major phase-γ is considered to unravel the influence of phase-fraction on evolution kinetics.
Fig. 11. Temporal change in the grain sizes of the ternary triplex-microstructure with equal and unequal phase-fractions are plotted by distinguishing the grains based on it chemical composition.
Fig. 12. Concurrent grain growth and coarsening of ternary triplex-microstructure with equal volume-fraction of the constituent phases in three-dimension. The volume fraction of the individual during the evolution is monitored and presented as a subplot.
Fig. 13. Change in the average grain size of ternary triplex-microstructure in two- and three-dimension are collectively plotted with time for a comparison.
Fig. 14. The grain-size distribution of the ternary triplex-microstructure in two- and three-dimension are presented by normalising with critical grain-size. Hillert and Weibull fittings are included to unravel the difference in the grain-size distribution.
[1] | D.G. Brandon, Acta Metall. 14 (11) (1966) 1479-1484. |
[2] | J.W. Cahn, Acta Metall. Mater. 39 (10) (1991) 2189-2199. |
[3] | J.W. Cahn, E.A. Holm, D.J. Srolovitz, Trans Tech Publ, 1992, pp. 141-158. |
[4] | D.L. Jiang, J.H. Wang, Y.L. Li, L.T. Ma, Mater. Sci. Eng.: A 109 (1989) 401-406. |
[5] | A. Keshavarzi, W. Wisniewski, C. Russel, ACS Appl. Mater. Interfaces 5 (17) (2013) 8531-8536. |
[6] | R.W. Davidge, T.J. Green, J. Mater. Sci. 3 (6) (1968) 629-634. |
[7] | R. Filip, K. Kubiak, W. Ziaja, J. Sieniawski, J. Mater. Process. Technol. 133 (1-2) (2003) 84-89. |
[8] | M.P. Harmer, H.M. Chan, G.A. Miller, J. Am. Ceram. Soc. 75 (7) (1992) 1715-1728. |
[9] | P.J. Hyun, H.S. Kwon, et al., Corros. Sci. 50 (2) (2008) 404-410. |
[10] | P.J. Ihsan-ul Haq Toor, H.S. Kwon Hyun, Corros. Sci. 50 (2008) 404-410. |
[11] | E.A. Holm, D.J. Srolovitz, J.W. Cahn, Acta Metall. Mater. 41 (4) (1993) 1119-1136. |
[12] | H. Natter, M. Schmelzer, M.-S. Löffler, C.E. Krill, A. Fitch, R. Hempelmann, J. Phys. Chem. B 104 (11) (2000) 2467-2476. |
[13] | B. Ingham, T.H. Lim, C.J. Dotzler, A. Henning, M.F. Toney, R.D. Tilley, Chem. Mater. 23 (14) (2011) 3312-3317. |
[14] | B.C. Larson, W. Yang, G.E. Ice, J.D. Budai, J.Z. Tischler, Nature 415 (6874) (2002) 887. |
[15] | A. Gladkikh, Y. Lereah, E. Glickman, M. Karpovski, A. Palevski, J. Schubert, Appl. Phys. Lett. 66 (10) (1995) 1214-1215. |
[16] | K. Kawasaki, T. Nagai, K. Nakashima, Philos. Mag. B 60 (3) (1989) 399-421. |
[17] | L.A. Barrales Mora, G. Gottstein, L.S. Shvindlerman, Acta Mater. 56 (20) (2008) 5915-5926. |
[18] | D. Zöllner, P. Streitenberger, Scr. Mater. 54 (9) (2006) 1697-1702. |
[19] | P.G. Kubendran Amos, L.T. Mushongera, Tobias Mittnacht, B. Nestler, Comput. Mater. Sci. 144 (2018) 374-385. |
[20] | P.G. Kubendran Amos, E. Schoof, D. Schneider, B. Nestler, Numerical Modelling in Engineering, Springer, 2018, pp. 47-63. |
[21] | P.G. Tobias, K. Amos, D. Schneider, B. Nestler, Numerical Modelling in Engineering, Springer, 2018, pp. 290-299. |
[22] | B.I. Halperin, P.C. Hohenberg, M. Shang-keng, Phys. Rev. B 10 (1) (1974) 139. |
[23] | P.G. Kubendran Amos, A. Bhattacharya, B. Nestler, K. Ankit, Acta Mater. 161 (2018) 400-411. |
[24] | S.-L. Wang, R.F. Sekerka, A.A. Wheeler, B.T. Murray, S.R. Coriell, R.J. Braun, G.B. McFadden, Phys. D: Nonlinear Phenomena 69 (1-2) (1993) 189-200. |
[25] | B. Echebarria, R. Folch, A. Karma, M. Plapp, Phys. Rev. E 70 (6) (2004) 061604. |
[26] | P.G. Kubendran Amos, L.T. Mushongera, B. Nestler, Comput. Mater. Sci. 144 (2018) 363-373. |
[27] | P.G. Kubendran Amos, E. Schoof, N. Streichan, D. Schneider, B. Nestler, Comput. Mater. Sci. 159 (2019) 281-296. |
[28] | P.G. Ramanathan Perumal, K. Amos, M. Selzer, B. Nestler, Comput. Mater. Sci. 140 (2017) 209-223. |
[29] | P.G. Ramanathan Perumal, K. Amos, M. Selzer, B. Nestler, Comput. Mater. Sci. 147 (2018) 227-237. |
[30] | P.G. Kubendran Amos, E. Schoof, D. Schneider, B. Nestler, Acta Mater. 159 (2018) 51-64. |
[31] | P.G. Amos, 2019 arXiv preprint arXiv:1906. 10404. |
[32] | L.-Q. Chen, D. Fan, J. Am. Ceram. Soc. 79 (5) (1996) 1163-1168. |
[33] | S.O. Poulsen, P.W. Voorhees, E.M. Lauridsen, Acta Mater. 61 (4) (2013) 1220-1228. |
[34] | H. Ravash, J. Vleugels, N. Moelans, J. Mater. Sci. 49 (20) (2014) 7066-7072. |
[35] | D. Fan, L.-Q. Chen, Scr. Mater. 37 (2) (1997) 233-238. |
[36] | D. Fan, L.-Q. Chen, Acta Mater. 45 (10) (1997) 4145-4154. |
[37] | D. Fan, L.-Q. Chen, Acta Mater. 45 (8) (1997) 3297-3310. |
[38] | V. Yadav, L. Vanherpe, N. Moelans, Comput. Mater. Sci. 125 (2016) 297-308. |
[39] | H. Ravash, J. Vleugels, N. Moelans, J. Mater. Sci. 52 (24) (2017) 13852-13867. |
[40] | N. Moelans, Acta Mater. 59 (2011) 1077-1086. |
[41] | L.-Q. Chen, Annu. Rev. Mater. Res. 32 (1) (2002) 113-140. |
[42] | I. Steinbach, Model. Simul. Mater. Sci. Eng. 17 (7) (2009) 073001. |
[43] | N. Moelans, F. Wendler, B. Nestler, Comput. Mater. Sci. 46 (2) (2009) 479-490. |
[44] | K. Asp, J. Agren, Acta Mater. 54 (5) (2006) 1241-1248. |
[45] | Y.U. Wang, Acta Mater. 54 (4) (2006) 953-961. |
[46] | K. Ahmed, T. Allen, A. El-Azab, J. Mater. Sci. 51 (3) (2016) 1261-1277. |
[47] |
B. Nestler, H. Garcke, B. Stinner, Phys. Rev. E 71 (4) (2005) 041609.
DOI URL |
[48] | R. Perumal, M. Selzer, B. Nestler, Comput. Mater. Sci. 159 (2019) 160-176. |
[49] | I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G.J. Schmitz, J.L.L. Rezende, Phys. D: Nonlinear Phenomena 94 (3) (1996) 135-147. |
[50] | O. Tschukin, A. Silberzahn, M. Selzer, P.G.K. Amos, D. Schneider, B. Nestler, Geotherm. Energy 5 (1) (2017) 19. |
[51] | S.G. Kim, W.T. Kim, T. Suzuki, Phys. Rev. E 60 (6) (1999) 7186. |
[52] | J. Eiken, B. Böttger, I. Steinbach, Phys. Rev. E 73 (6) (2006) 066122. |
[53] | V.E. Badalassi, H.D. Ceniceros, S. Banerjee, J. Comput. Phys. 190 (2) (2003) 371-397. |
[54] | M. Plapp, Phys. Rev. E 84 (3) (2011) 031601. |
[55] | L.K. Aagesen, Y. Gao, D. Schwen, K. Ahmed, Phys. Rev. E 98 (2) (2018) 023309. |
[56] | M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis, Cambridge University Press, 2007. |
[57] | N. Moelans, B. Blanpain, P. Wollants, Phys. Rev. B 78 (2) (2008) 024113. |
[58] | R. Folch, M. Plapp, Phys. Rev. E 68 (1) (2003) 010602. |
[59] | C.J. Kuehmann, P.W. Voorhees, Metall. Mater. Trans. A 27 (4) (1996) 937-943. |
[60] | T. Philippe, P.W. Voorhees, Acta Mater. 61 (11) (2013) 4237-4244. |
[61] | L.T. Mushongera, P.G. Kubendran Amos, B. Nestler, K. Ankit, Acta Mater. 150 (2018) 78-87. |
[62] | P.G. Kubendran Amos, E. Schoof, D. Schneider, B. Nestler, J. Alloys Compd. 767 (2018) 1141-1154. |
[63] | K.B. Alexander, P.F. Becher, S.B. Waters, A. Bleier, J. Am. Ceram. Soc. 77 (4) (1994) 939-946. |
[64] | D. Casellas, M.M. Nagl, L. Llanes, M. Anglada, J. Am. Ceram. Soc. 88 (7) (2005) 1958-1963. |
[65] | H.J. Frost, C.V. Thompson, D.T. Walton, Acta Metall. Mater. 38 (8) (1990) 1455-1462. |
[66] | R. Carel, C.V. Thompson, H.J. Frost, Acta Mater. 44 (6) (1996) 2479-2494. |
[67] |
M. Hillert, Acta Metall. 13 (3) (1965) 227-238.
DOI URL |
[68] | C. Wang, G. Liu, Mater. Lett. 57 (28) (2003) 4424-4428. |
[69] | V. Yadav, N. Moelans, Scr. Mater. 142 (2018) 148-152. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||