J. Mater. Sci. Technol. ›› 2022, Vol. 103: 84-97.DOI: 10.1016/j.jmst.2021.06.027
• Research Article • Previous Articles Next Articles
Yunlong Lia,b, Xin Lina,b,*(), Yunlong Hua,b, Jun Yua,b, Junguo Zhaoc, Hongbiao Dongc,**(
), Weidong Huanga,b
Received:
2021-01-13
Revised:
2021-06-11
Accepted:
2021-06-14
Published:
2022-03-20
Online:
2021-08-26
Contact:
Xin Lin,Hongbiao Dong
About author:
** hd38@leicester.ac.uk (H. Dong).Yunlong Li, Xin Lin, Yunlong Hu, Jun Yu, Junguo Zhao, Hongbiao Dong, Weidong Huang. Seynergistic effect of Mo and Zr additions on microstructure and mechanical properties of Nb‐Ti‐Si‐based alloys additively manufactured by laser directed energy deposition[J]. J. Mater. Sci. Technol., 2022, 103: 84-97.
Fig. 1. SEM images of Nb powder (a), Ti powder (b), Si powder (c), Mo powder (d) and Zr powder (e); schematic illustration of the L-DED process using blended elemental powders (f), and processing parameters used for the L-DED process (g), and simple straight walls (h).
Alloy | Nominal composition (at.%) | Actual composition (at.%) | ||||
---|---|---|---|---|---|---|
Nb | Ti | Si | Mo | Zr | ||
4Mo-3Zr | Nb-22Ti-15Si-4Mo-3Zr | Balance | 21.92 | 14.85 | 4.00 | 2.53 |
4Mo-6Zr | Nb-22Ti-15Si-4Mo-6Zr | Balance | 22.70 | 14.73 | 3.96 | 5.21 |
8Mo-3Zr | Nb-22Ti-15Si-8Mo-3Zr | Balance | 22.31 | 14.40 | 8.76 | 2.75 |
8Mo-6Zr | Nb-22Ti-15Si-8Mo-6Zr | Balance | 22.71 | 15.49 | 8.64 | 6.17 |
Table 1 Compositions of the Nb-Ti-Si-based alloys under as-deposited condition, determined by EDX mapping analysis.
Alloy | Nominal composition (at.%) | Actual composition (at.%) | ||||
---|---|---|---|---|---|---|
Nb | Ti | Si | Mo | Zr | ||
4Mo-3Zr | Nb-22Ti-15Si-4Mo-3Zr | Balance | 21.92 | 14.85 | 4.00 | 2.53 |
4Mo-6Zr | Nb-22Ti-15Si-4Mo-6Zr | Balance | 22.70 | 14.73 | 3.96 | 5.21 |
8Mo-3Zr | Nb-22Ti-15Si-8Mo-3Zr | Balance | 22.31 | 14.40 | 8.76 | 2.75 |
8Mo-6Zr | Nb-22Ti-15Si-8Mo-6Zr | Balance | 22.71 | 15.49 | 8.64 | 6.17 |
Fig. 3. Back scatter electron (BSE) images of the microstructure of as-deposited Nb-22Ti-15Si-xMo-yZr alloys: (a) 4Mo-3Zr, (b) 4Mo-6Zr, (c) 8Mo-3Zr, (d) 8Mo-6Zr.
Alloy | Constituent Phase | Composition (at.%) | ||||
---|---|---|---|---|---|---|
Nb | Ti | Si | Mo | Zr | ||
4Mo-3Zr | Nbss | 70.79 | 19.36 | 2.49 | 6.79 | 0.57 |
Nb3Si | 56.01 | 15.43 | 24.97 | 1.99 | 1.60 | |
γ-Nb5Si3 | 32.94 | 25.48 | 35.66 | 0.16 | 5.76 | |
Eutectic | 49.16 | 24.21 | 20.93 | 2.62 | 3.08 | |
4Mo-6Zr | Nbss | 70.95 | 19.01 | 1.65 | 7.48 | 0.92 |
γ-Nb5Si3 | 24.55 | 26.78 | 35.63 | 0.88 | 13.02 | |
Eutectic | 51.41 | 22.63 | 16.36 | 3.99 | 5.61 | |
8Mo-3Zr | Nbss | 67.17 | 16.37 | 2.50 | 13.21 | 0.75 |
γ-Nb5Si3 | 29.86 | 26.28 | 35.00 | 0.40 | 8.46 | |
Eutectic | 49.04 | 23.25 | 18.26 | 5.82 | 3.09 | |
8Mo-6Zr | Nbss | 63.44 | 15.91 | 2.70 | 16.78 | 1.18 |
γ-Nb5Si3 | 28.84 | 22.79 | 33.89 | 0.58 | 13.89 | |
Eutectic | 45.49 | 19.73 | 20.53 | 7.40 | 6.85 |
Table 2 Phase composition analysis of as-deposition Nb-22Ti-15Si-xMo-yZr alloys, determined by EDX.
Alloy | Constituent Phase | Composition (at.%) | ||||
---|---|---|---|---|---|---|
Nb | Ti | Si | Mo | Zr | ||
4Mo-3Zr | Nbss | 70.79 | 19.36 | 2.49 | 6.79 | 0.57 |
Nb3Si | 56.01 | 15.43 | 24.97 | 1.99 | 1.60 | |
γ-Nb5Si3 | 32.94 | 25.48 | 35.66 | 0.16 | 5.76 | |
Eutectic | 49.16 | 24.21 | 20.93 | 2.62 | 3.08 | |
4Mo-6Zr | Nbss | 70.95 | 19.01 | 1.65 | 7.48 | 0.92 |
γ-Nb5Si3 | 24.55 | 26.78 | 35.63 | 0.88 | 13.02 | |
Eutectic | 51.41 | 22.63 | 16.36 | 3.99 | 5.61 | |
8Mo-3Zr | Nbss | 67.17 | 16.37 | 2.50 | 13.21 | 0.75 |
γ-Nb5Si3 | 29.86 | 26.28 | 35.00 | 0.40 | 8.46 | |
Eutectic | 49.04 | 23.25 | 18.26 | 5.82 | 3.09 | |
8Mo-6Zr | Nbss | 63.44 | 15.91 | 2.70 | 16.78 | 1.18 |
γ-Nb5Si3 | 28.84 | 22.79 | 33.89 | 0.58 | 13.89 | |
Eutectic | 45.49 | 19.73 | 20.53 | 7.40 | 6.85 |
Fig. 4. BSE and TEM images of γ-Nb5Si3 precipitates inside Nbss matrix in as-deposited 4Mo-6Zr alloy: (a) BSE image, (b) TEM image of FIB sample, (c) high-angle annular dark field images (HAADF) of the γ-Nb5Si3 precipitates inside of Nbss phase, (d) element mappings by STEM-EDS (e) high-resolution TEM(HRTEM) image of the interface between γ-Nb5Si3 precipitate and Nbss phase, (f) selected area electron diffraction (SAED) pattern of orientation relationship (OR) between γ-Nb5Si3 precipitates and Nbss matrix, (g) schematic diagram of SAED pattern of OR between the γ-Nb5Si3 precipitates and Nbss phase.
Fig. 5. EBSD phase mapping of as-deposited Nb-22Ti-15Si-xMo-yZr alloys (a1-d1), the orientation maps (a2-d2) and inverse pole figures (IPF) of Nbss and γ-Nb5Si3 phases along the deposited direction (Y0) in as-deposited xMo-yZr:(a1-a3) 4Mo-3Zr, (b1-b3) 4Mo-6Zr, (c1-c3) 8Mo-3Zr, (d1-d3) 8Mo-6Zr.
Alloy | Constituent Phase | Composition (at.%) | ||||
---|---|---|---|---|---|---|
Nb | Ti | Si | Mo | Zr | ||
4Mo-3Zr-HT | Nbss | 70.67 | 22.45 | 1.21 | 5.74 | 0.00 |
α-Nb5Si3 | 46.79 | 13.59 | 36.02 | 0.66 | 2.97 | |
γ-Nb5Si3 | 32.00 | 24.04 | 35.70 | - | 7.68 | |
4Mo-6Zr-HT | Nbss | 70.80 | 22.45 | 0.87 | 5.58 | 0.35 |
γ-Nb5Si3 | 26.95 | 22.89 | 35.46 | - | 14.65 | |
8Mo-3Zr-HT | Nbss | 65.94 | 20.46 | 0.81 | 12.79 | - |
α-Nb5Si3 | 44.48 | 16.40 | 35.81 | 0.68 | 2.64 | |
γ-Nb5Si3 | 30.48 | 25.80 | 35.63 | 0.50 | 7.59 | |
8Mo-6Zr -HT | Nbss | 64.70 | 21.50 | 0.82 | 12.84 | 0.14 |
γ-Nb5Si3 | 25.09 | 23.62 | 35.48 | 0.25 | 15.56 |
Table 3 Phase composition analysis of Nb-22Ti-15Si-xMo-yZr alloys after heat treatment, determined by EDX.
Alloy | Constituent Phase | Composition (at.%) | ||||
---|---|---|---|---|---|---|
Nb | Ti | Si | Mo | Zr | ||
4Mo-3Zr-HT | Nbss | 70.67 | 22.45 | 1.21 | 5.74 | 0.00 |
α-Nb5Si3 | 46.79 | 13.59 | 36.02 | 0.66 | 2.97 | |
γ-Nb5Si3 | 32.00 | 24.04 | 35.70 | - | 7.68 | |
4Mo-6Zr-HT | Nbss | 70.80 | 22.45 | 0.87 | 5.58 | 0.35 |
γ-Nb5Si3 | 26.95 | 22.89 | 35.46 | - | 14.65 | |
8Mo-3Zr-HT | Nbss | 65.94 | 20.46 | 0.81 | 12.79 | - |
α-Nb5Si3 | 44.48 | 16.40 | 35.81 | 0.68 | 2.64 | |
γ-Nb5Si3 | 30.48 | 25.80 | 35.63 | 0.50 | 7.59 | |
8Mo-6Zr -HT | Nbss | 64.70 | 21.50 | 0.82 | 12.84 | 0.14 |
γ-Nb5Si3 | 25.09 | 23.62 | 35.48 | 0.25 | 15.56 |
Fig. 9. (a1-d1) EBSD phase mapping of the Nb-22Ti-15Si-xMo-yZr alloys after heat treatment, (a2-d2) the IPF orientation maps, and (a3-d3) pole figures of Nbss, γ-Nb5Si3 and α-Nb5Si3phases along the deposition direction(Y0) in Nb-22Ti-15Si-xMo-yZr alloys after heat treatment. (a1-a3) 4Mo-3Zr-HT, (b1-b3) 4Mo-6Zr-HT, (c1-c3) 8Mo-3Zr-HT, (d1-d3) 8Mo-6Zr-HT.
Fig. 11. Loading-displacement curves of the alloys from the three-point bending test (a), and the room temperature fracture toughness (KQ) for Nb-22Ti-15Si-xMo-yZr alloys (b).
Fig. 13. SEM images on fracture surfaces of Nb-22Ti-15Si-xMo-yZr alloys after the three-point bending test: (a, a’) 4Mo-3Zr, (b, b’) 4Mo-6Zr, (c, c’) 8Mo-3Zr, (d, d’) 8Mo-6Zr, (e, e’ e’’) 4Mo-6Zr-HT, (f, f’) 8Mo-6Zr-HT.
Fig. 14. Three-dimensional morphologies of fracture surface of 4Mo-6Zr alloy before and after heat treatment: (a) as-deposited 4Mo-6Zr, (b) 4Mo-6Zr-HT.
Chemical compositions | Processing route | Fracture toughness (MPam1/2) | References |
---|---|---|---|
Nb-16Si | arc-melting | 5.4 | [ |
Nb-16Si | arc-melting+ 1500 °C/100 h | 7.35 | [ |
Nb-16Si-2Fe | arc | 9.37 | [ |
Nb-16Si-2Fe | arc-melting+1350 °C/100 h | 10.19 | [ |
Nb-15Si-22Ti-4Mo-6Zr | L-DED | 10.61 | This work |
Nb-15Si-22Ti-4Mo-6Zr | L-DED+ 1400 °C /30 h | 13.61 | This work |
Nb-16Si-23Ti-4Cr-2Al-2Hf | DS+1500 °C /12 h | 9.88 | [ |
Nb-20Ti-16Si-3Cr-3Al-2Hf | arc-melting | 11.75 | [ |
Nb-20Ti-16Si-3Cr-3Al-2Hf | arc-melting+1400 °C /50 h | 12.10 | [ |
Nb-10Ti-16Si-3Cr-3Al-2Hf-10Zr | arc-melting | 11.50 | [ |
Nb-10Ti-16Si-3Cr-3Al-2Hf-10Zr | arc-melting+1400 °C /50 h | 12.25 | [ |
Nb-22Ti-16Si-3Al-2B | vacuum non-consumable arc melting | 11.6 | [ |
Nb-22Ti-16Si-3Al-2B-4Hf-5Cr | vacuum non-consumable arc melting | 11.9 | [ |
Nb-16Si-22Ti-2Al-2Hf-2Cr | Reactive Hot Press Sintering | 10.14 | [ |
Nb-16Si-22Ti-2Al-2Hf-2Cr | Reactive Hot Press Sintering+1500 °C/50 h | 10.02 | [ |
Nb-16Si-22Ti-2Al-2Hf-2Cr | Cast+1375 °C/100 h | 14.4 | [ |
Nb-22Ti-15Si-5Cr-5Mo-4Zr-3Al-2Hf | vacuum non-consumable arc melting | 9.20 | [ |
Nb-22Ti-15Si-5Cr-5Mo-4Zr-3Al-2Hf-3V | vacuum non-consumable arc melting | 10.25 | [ |
Nb-15Si-24Ti-4Cr-2Al-2Hf | DS+1300 °C/100 h | 9.87 | [ |
Nb-15Si-24Ti-4Cr-2Al-2Hf-1V | DS+1300 °C/100 h | 12.98 | [ |
Table 4 Comparison of fracture toughness values (KQ) of Nb-Si-based alloys with different chemical compositions.
Chemical compositions | Processing route | Fracture toughness (MPam1/2) | References |
---|---|---|---|
Nb-16Si | arc-melting | 5.4 | [ |
Nb-16Si | arc-melting+ 1500 °C/100 h | 7.35 | [ |
Nb-16Si-2Fe | arc | 9.37 | [ |
Nb-16Si-2Fe | arc-melting+1350 °C/100 h | 10.19 | [ |
Nb-15Si-22Ti-4Mo-6Zr | L-DED | 10.61 | This work |
Nb-15Si-22Ti-4Mo-6Zr | L-DED+ 1400 °C /30 h | 13.61 | This work |
Nb-16Si-23Ti-4Cr-2Al-2Hf | DS+1500 °C /12 h | 9.88 | [ |
Nb-20Ti-16Si-3Cr-3Al-2Hf | arc-melting | 11.75 | [ |
Nb-20Ti-16Si-3Cr-3Al-2Hf | arc-melting+1400 °C /50 h | 12.10 | [ |
Nb-10Ti-16Si-3Cr-3Al-2Hf-10Zr | arc-melting | 11.50 | [ |
Nb-10Ti-16Si-3Cr-3Al-2Hf-10Zr | arc-melting+1400 °C /50 h | 12.25 | [ |
Nb-22Ti-16Si-3Al-2B | vacuum non-consumable arc melting | 11.6 | [ |
Nb-22Ti-16Si-3Al-2B-4Hf-5Cr | vacuum non-consumable arc melting | 11.9 | [ |
Nb-16Si-22Ti-2Al-2Hf-2Cr | Reactive Hot Press Sintering | 10.14 | [ |
Nb-16Si-22Ti-2Al-2Hf-2Cr | Reactive Hot Press Sintering+1500 °C/50 h | 10.02 | [ |
Nb-16Si-22Ti-2Al-2Hf-2Cr | Cast+1375 °C/100 h | 14.4 | [ |
Nb-22Ti-15Si-5Cr-5Mo-4Zr-3Al-2Hf | vacuum non-consumable arc melting | 9.20 | [ |
Nb-22Ti-15Si-5Cr-5Mo-4Zr-3Al-2Hf-3V | vacuum non-consumable arc melting | 10.25 | [ |
Nb-15Si-24Ti-4Cr-2Al-2Hf | DS+1300 °C/100 h | 9.87 | [ |
Nb-15Si-24Ti-4Cr-2Al-2Hf-1V | DS+1300 °C/100 h | 12.98 | [ |
[1] |
B.P. Bewlay, M.R. Jackson, H.A. Lipsitt, Metall. Mater. Trans. A 27 (1996) 3801-3808.
DOI URL |
[2] | P.R. Subramanian, M.G. Mendiratta, D.M. Dimiduk, JOM 48 (1996) 33-38. |
[3] |
B.P. Bewlay, M.R. Jackson, P.R. Subramanian, J.C. Zhao, Metall. Mater. Trans. A 34 (2003) 2043-2052.
DOI URL |
[4] |
Z. Li, L.M. Peng, Acta Mater. 55 (2007) 6573-6585.
DOI URL |
[5] |
G. Madan, J.J. Mendiratta, Lewandowski, M. Dennis, Dimiduk, Metall. Mater. Trans. A 22 (1991) 1573-1583.
DOI URL |
[6] |
S. Shi, L. Zhu, H. Zhang, Z. Sun, J. Alloy. Compd. 689 (2016) 296-301.
DOI URL |
[7] |
Y.X. Tian, J.T. Guo, L.Z. Zhou, G.M. Cheng, H.Q. Ye, Mater. Lett. 62 (2008) 2657-2660.
DOI URL |
[8] |
S. Kashyap, C.S. Tiwary, K. Chattopadhyay, Intermetallics 19 (2011) 1943-1952.
DOI URL |
[9] |
E. Guo, S.S. Singh, C. Mayer, X. Meng, Y. Xu, L. Luo, M. Wang, N. Chawla, J. Alloy. Compd. 704 (2017) 89-100.
DOI URL |
[10] |
Z. Sun, X. Guo, X. Tian, L. Zhou, Intermetallics 54 (2014) 143-147.
DOI URL |
[11] |
Hu Zhang, B. Kong, G. Huarui, J.L. Yueling, Mater. Sci. Eng. A 701 (2017) 149-157.
DOI URL |
[12] |
S.C. Kwai, Metall. Mater. Trans. A 32 (2001) 2475-2487.
DOI URL |
[13] |
S. Kwai, D. Chan, L. Davidson, Metall. Mater. Trans. A 30 (1999) 925-939.
DOI URL |
[14] |
C.L. Ma, J.G. Li, Y. Tan, R. Tanaka, S. Hanada, Mater. Sci. Eng. A 386 (2004) 375-383.
DOI URL |
[15] |
W.Y. Kim, H. Tanaka, A. Kasama, R. Tanaka, S. Hanada, Intermetallics 9 (2001) 521-527.
DOI URL |
[16] |
C.L. Ma, J.G. Li, Y. Tan, R. Tanaka, S. Hanada, Mater. Sci. Eng. A 386 (2004) 375-383.
DOI URL |
[17] |
M. Sankar, G. Phanikumar, V.V.S. Prasad, Mater. Sci. Eng. A 754 (2019) 224-231.
DOI URL |
[18] |
Y. Li, X. Lin, Y. Hu, N. Kang, W. Huang, J. Alloy. Compd. 783 (2019) 66-76.
DOI URL |
[19] |
Q. Yanqiang, G. Xiping, Z. Yuxiang, Intermetallics 88 (2017) 19-27.
DOI URL |
[20] |
S. Zhang, X. Shi, J. Sha, Intermetallics 56 (2015) 15-23.
DOI URL |
[21] |
W.Y. Kim, H. Tanaka, S. Hanada, Intermetallics 10 (2002) 625-634.
DOI URL |
[22] |
X. Li, H. Chen, J. Sha, H. Zhang, Mater. Sci. Eng. A 527 (2010) 6140-6152.
DOI URL |
[23] |
Y. Tang, X. Guo, J. Alloy. Compd. 731 (2018) 985-994.
DOI URL |
[24] |
Y. Huang, L. Jia, Z. Jin, B. Kong, Y. Guo, J. Sha, H. Zhang, Mater. Des. 160 (2018) 671-682.
DOI URL |
[25] |
W. Liu, J.B. Sha, Mater. Des. 111 (2016) 301-311.
DOI URL |
[26] | F. Liu, X. Lin, J. Shi, Y. Zhang, P. Bian, X. Li, Y. Hu, Addit. Manuf. 29 (2019) 100795. |
[27] |
C.J. Todaro, M.A. Easton, D. Qiu, D. Zhang, M.J. Bermingham, E.W. Lui, M. Brandt, D.H. StJohn, M. Qian, Nat. Commun. 11 (2020) 1-9.
DOI URL |
[28] |
P. Kurnsteiner, M.B. Wilms, A. Weisheit, B. Gault, E.A. Jagle, D. Raabe, Nature 582 (2020) 515-519.
DOI URL |
[29] |
X. Lin, T.M. Yue, H.O. Yang, W.D. Huang, Acta Mater. 54 (2006) 1901-1915.
DOI URL |
[30] | L.G. Hsiang, P. Eujin, H. David, D. M.M., Addit. Manuf. 23 (2018) 34-44. |
[31] |
P. Tsai, K.M. Flores, Acta Mater. 120 (2016) 426-434.
DOI URL |
[32] |
S.K. Makineni, A.R. Kini, E.A. Jägle, H. Springer, D. Raabe, B. Gault, Acta Mater. 151 (2018) 31-40.
DOI URL |
[33] |
Y. Li, X. Lin, Y. Hu, X. Gao, J. Yu, M. Qian, H. Dong, W. Huang, Corros. Sci. 173 (2020) 108757.
DOI URL |
[34] | ASTM E399-12 International, ASTM International, West Conshohocken (PA), 2012. |
[35] |
X. Ma, X. Guo, M. Fu, Y. Qiao, Scripta Mater. 164 (2019) 86-90.
DOI URL |
[36] |
X. Ma, X. Guo, M. Fu, H. Guo, Scr. Mater. 139 (2017) 108-113.
DOI URL |
[37] |
S. Zhang, X. Guo, Intermetallics 64 (2015) 51-58.
DOI URL |
[38] |
S. Miura, M. AoKi, Y. Saeki, K. Ohkubo, Y. Mishima, T. Mohri, Metall. Mater. Trans. A 36 (2005) 489-496.
DOI URL |
[39] |
L.N. Jia, J.F. Weng, Z. Li, Z. Hong, L.F. Su, H. Zhang, Mater. Sci. Eng. A 623 (2015) 32-37.
DOI URL |
[40] | Y.X. Tian, J.T. Guo, L.Y. Sheng, G.M. Cheng, L.Z. Zhou, L.L. He, H.Q. Ye, Inter-metallics 16 (2008) 807-812. |
[41] |
S. Miura, M. Aoki, Y. Saeki, K. Ohkubo, T. Mohri, Y. Mishima, Metall. Mater. Trans. A 36 (2005) 489-496.
DOI URL |
[42] |
H. Wu, G. Fan, B.C. Jin, L. Geng, X. Cui, M. Huang, X. Li, S. Nutt, Mater. Sci. Eng. A 670 (2016) 233-239.
DOI URL |
[43] |
Y. Guo, L. Jia, B. Kong, H. Zhang, H. Zhang, Mater. Sci. Eng. A 701 (2017) 149-157.
DOI URL |
[44] |
M.F. Ashby, F.J. Blunt, M. Bannister, Acta Mater. 37 (1989) 1847-1857.
DOI URL |
[45] |
J.R. Zhou, J.B. Sha, Intermetallics 34 (2013) 1-9.
DOI URL |
[46] |
Y. Kang, F. Guo, M. Li, Mater. Sci. Eng. A 760 (2019) 118-124.
DOI URL |
[47] |
S. Zhang, X. Guo, Mater. Sci. Eng. A 638 (2015) 121-131.
DOI URL |
[48] |
W. Liu, Y.M. Fu, J.B. Sha, Metall. Mater. Trans. A 44 (2013) 2319-2330.
DOI URL |
[49] |
C. Yang, L. Jia, C. Zhou, H. Zhang, J. Sha, Metall. Mater. Trans. A 45 (2014) 4842-4850.
DOI URL |
[50] |
R. Ma, X. Guo, J. Alloy. Compd. 845 (2020) 156254.
DOI URL |
[51] |
S. Zhang, X. Guo, Intermetallics 64 (2015) 51-58.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||