J. Mater. Sci. Technol. ›› 2022, Vol. 103: 98-104.DOI: 10.1016/j.jmst.2021.06.039
• Research Article • Previous Articles Next Articles
Jiali Chena,b, Da Yic,*(
), Xichen Jiab, Guoqing Wangb, Zhouping Sunb, Lihua Zhangb, Yinfeng Liua, Bin Shenb,*(
), Wenge Zhengb
Received:2021-06-07
Revised:2021-06-18
Accepted:2021-06-20
Published:2022-03-20
Online:2021-08-27
Contact:
Da Yi,Bin Shen
About author:shenbin@nimte.ac.cn (B. Shen).Jiali Chen, Da Yi, Xichen Jia, Guoqing Wang, Zhouping Sun, Lihua Zhang, Yinfeng Liu, Bin Shen, Wenge Zheng. Biomass-based aligned carbon networks with double-layer construction for tunable electromagnetic shielding with ultra-low reflectivity[J]. J. Mater. Sci. Technol., 2022, 103: 98-104.
Fig. 1. (a) Optical images of original cotton and C800. (b-g) SEM imaging showing the surface and cross-section morphology of (b, e) original cotton (surface), (c, f) C-800 (surface), and (d, g) C800 (cross-section). (h-i) Raman spectra (h), density (i) and conductivity (i) of different carbon networks with elevated pyrolysis temperature.
Fig. 2. Aligned fiber-induced EMI shielding mechanism of carbon networks (C800). (a) EMI SE of C800 at various angles (0-90°) between the fibers’ oriented direction and electric field direction of incident waves, and the average SET (b), SEA, and SER (c) at different angles (0-180°), and the angle-induced (c) average R-A coefficient change of C800. (d) Simulation results of EMI-shielding performance (d) in the X-band at different angles (0-90°), and the theoretical SET (e) changing in the range of 0-180°. (f) The comparison of experimental (Ex-SEA, Ex-SER, Ex-R, and Ex-A) and theoretical (Th-SEA, Th-SER, Th-R, and Th-A) results of different angles in X-band, (g) the EMI SE in X-band of carbon networks with elevated pyrolysis temperature (600-1000 °C). (h) The corresponding fiber-orientation-induced EMI shielding mechanism, and (i) the three-dimensional (3-D) full-wave simulation model of single-layer carbon networks.
Fig. 3. EMI shielding mechanism of the double-layer carbon networks (C700-800). (a) EMI SE of C700-800 at various angles (0-90°), and the angle-induced average SET (b), SEA-SER, and R-A coefficient (c) change of C700-800. (d) Simulation results of EMI-shielding performance (d) in the X-band at different angles (0-90°), and the theoretical SET (e) changing in the range of 0-180°. (f) The comparison of experimental (Ex-SEA, Ex-SER, Ex-R, and Ex-A) and theoretical (Th-SEA, Th-SER, Th-R, and Th-A) results of different angles in X-band. (g) The destructive-interference induced low-reflectivity EMI-shielding mechanism, and (h) the phase variation of the upper-surface reflection waves and the bottom-surface reflection waves. (i) The equivalent circuit model of the double-layer carbon networks.
Fig. 4. EMI-shielding performance of the double-layer carbon networks. (a) The angle-induced average SET of C600-800, C700-800, C800-800, and the SEA-SER and R-A coefficients of C600-800 (b) and C800-800 (c). (d) The angle-induced average SET of C700-700, C700-800, C700-1000, and the SEA-SER and R-A coefficient of C700-700 (e) and C700-1000 (f).
| [1] |
C. Liang, H. Qiu, P. Song, X. Shi, J. Kong, J. Gu, Sci. Bull. 65 (2020) 616-622.
DOI URL |
| [2] |
X. Jia, B. Shen, L. Zhang, W. Zheng, Carbon 173 (2021) 932-940.
DOI URL |
| [3] |
J. Li, J.L. Chen, X.H. Tang, J.H. Cai, J.H. Liu, M. Wang, J. Colloid Interface Sci. 565 (2020) 536-545.
DOI URL |
| [4] |
H. Zhang, B. Zhao, F.Z. Dai, H. Xiang, Z. Zhang, Y. Zhou, J. Mater. Sci. Technol. 77 (2021) 58-65.
DOI URL |
| [5] |
M. Wang, X.H. Tang, J.H. Cai, H. Wu, J.B Shen, S.Y. Guo, Carbon 177 (2021) 377-402.
DOI URL |
| [6] |
J.H. Cai, X.H. Tang, X.D. Chen, M. Wang, Composites, Part A 140 (2021) 106188.
DOI URL |
| [7] |
M.H. Al-Saleh, U. Sundararaj, Carbon 47 (2009) 1738-1746.
DOI URL |
| [8] |
Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Nano Lett. 5 (2005) 2131-2134.
DOI URL |
| [9] |
J. Li, Y.J. Tan, Y.F. Chen, H. Wu, S. Guo, M. Wang, Appl. Surf. Sci. 466 (2019) 657-665.
DOI URL |
| [10] |
J.H. Cai, J. Li, X.D. Chen, M. Wang, Chem. Eng. J. 393 (2020) 124805.
DOI URL |
| [11] |
Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Adv. Mater. 25 (2013) 1296-1300.
DOI URL |
| [12] | Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu, W. Zhang, T. Zhou, Z. Zhang, X. Zhang, H.M. Cheng, W. Ren, Adv. Mater. 32 (2020) 1-9. |
| [13] |
X. Yang, S. Fan, Y. Li, Y. Guo, Y. Li, K. Ruan, S. Zhang, J. Zhang, J. Kong, J. Gu, Composites, Part A 128 (2020) 105670.
DOI URL |
| [14] |
S. Hou, W. Ma, G. Li, Y. Zhang, Y. Ji, F. Fan, Y. Huang, J. Mater. Sci. Technol. 52 (2020) 136-144.
DOI URL |
| [15] |
L. Han, Q. Song, K. Li, X. Yin, J. Sun, H. Li, F. Zhang, X. Ren, X. Wang, J. Mater. Sci. Technol. 72 (2021) 154-161.
DOI URL |
| [16] |
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Science 353 (2016) 1137-1140.
DOI PMID |
| [17] | J. Liu, H. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z.Z. Yu, Adv. Mater. 29 (2017) 1-6. |
| [18] | Q.W. Wang, H. Zhang, J. Liu, S. Zhao, X. Xie, L. Liu, R. Yang, N. Koratkar, Z.Z. Yu, Adv. Funct. Mater. 29 (2019) 1-10. |
| [19] |
A. Iqbal, P. Sambyal, C.M. Koo, Adv. Funct. Mater. 30 (2020) 2000883.
DOI URL |
| [20] |
Y. Zhang, K. Ruan, X. Shi, H. Qiu, Y. Pan, Y. Yan, J. Gu, Carbon 175 (2021) 271-280.
DOI URL |
| [21] |
Z. Fan, D. Wang, Y. Yuan, Y. Wang, Z. Cheng, Y. Liu, Chem. Eng. J. 381 (2020) 122696.
DOI URL |
| [22] |
X. Yin, H. Li, L. Han, J. Meng, J. Lu, L. Zhang, W. Li, Chem. Eng. J. 387 (2020) 124025.
DOI URL |
| [23] |
B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei, W. Zheng, Carbon 113 (2017) 55-62.
DOI URL |
| [24] |
P. Song, B. Liu, H. Qiu, X. Shi, D. Cao, J. Gu, Compos. Commun. 24 (2021) 100653.
DOI URL |
| [25] | Y.Q. Li, Y.A. Samad, K. Polychronopoulou, K. Liao, ACS Sustainable, ACS Sustain-able Chem. Eng. 3 (2015) 1419-1427. |
| [26] |
A. Chithra, P. Wilson, S. Vijayan, R. Rajeev, K. Prabhakaran, Ind. Crops Prod. 145 (2020) 112076.
DOI URL |
| [27] |
X. Ma, Y. Li, B. Shen, L. Zhang, Z. Chen, Y. Liu, W. Zhai, W. Zheng, ACS Appl. Mater. Interfaces 10 (2018) 38255-38263.
DOI URL |
| [28] |
S. Li, D. Liu, W. Li, G. Sui, ACS Sustainable Chem. Eng. 8 (2020) 435-444.
DOI URL |
| [29] |
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu, Z. Ma, Y. Guo, J. Gu, Nano-Micro Lett. 13 (2021) 91.
DOI URL |
| [30] |
L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
| [31] |
Y. Yuan, X. Sun, M. Yang, F. Xu, Z. Lin, X. Zhao, Y. Ding, J. Li, W. Yin, Q. Peng, X. He, Y. Li, ACS Appl. Mater. Interfaces 9 (2017) 21371-21381.
DOI URL |
| [32] |
X. Ma, B. Shen, L. Zhang, Z. Chen, Y. Liu, W. Zhai, W. Zheng, ACS Sustainable Chem. Eng. 7 (2019) 9663-9670.
DOI URL |
| [33] |
Y. Fei, M. Liang, T. Zhou, Y. Chen, H. Zou, Carbon 167 (2020) 575-584.
DOI URL |
| [34] |
Z. Zeng, Y. Zhang, X.Y.D. Ma, S.I.S. Shahabadi, B. Che, P. Wang, X. Lu, Carbon 140 (2018) 227-236.
DOI URL |
| [35] |
S. Li, J. Wang, Z. Zhu, D. Liu, W. Li, G. Sui, C.B. Park, J. Mater. Chem. A 9 (2021) 358-370.
DOI URL |
| [36] |
Y. Chen, L. Zhang, C. Mei, Y. Li, G. Duan, S. Agarwal, A. Greiner, C. Ma, S. Jiang, ACS Appl. Mater. Interfaces 12 (2020) 35513-35522.
DOI URL |
| [37] |
Z. Zeng, C. Wang, Y. Zhang, P. Wang, S.I. Seyed Shahabadi, Y. Pei, M. Chen, X. Lu, ACS Appl. Mater. Interfaces 10 (2018) 8205-8213.
DOI URL |
| [38] | Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch, S. Abdolhosseinzadeh, J. Heier, F. Nüesch, C. Zhang, G. Nyström, Adv. Sci. 7 (2020) 1-9. |
| [39] | X.H. Li, X. Li, K.N. Liao, P. Min, T. Liu, A. Dasari, Z.Z. Yu, ACS Appl. Mater. Inter-faces 8 (2016) 33230-33239. |
| [40] |
Z. Zeng, C. Wang, T. Wu, D. Han, M. Luković, F. Pan, G. Siqueira, G. Nyström, J. Mater. Chem. A 8 (2020) 17969-17979.
DOI URL |
| [41] | J.A. Kong, Electromagnetic Wave Theory, Cambridge, 2008. |
| [42] |
F. Costa, A. Monorchio, G. Manara, IEEE Trans. Antennas Propag. 58 (2010) 1551-1558.
DOI URL |
| [43] |
D. Yi, X.C. Wei, Y.L. Xu, IEEE Trans. Microwave Theory Tech. 65 (2017) 2819-2826.
DOI URL |
| [44] | X.C. Tong, Advanced Materials and Design for Electromagnetic Interference Shielding, CRC Press, 2008. |
| [45] |
D. Yi, X.C. Wei, R. Yang, R.X.K. Gao, Y.B. Yang, IEEE Trans. Electromagn. Compat. 62 (2020) 398-405.
DOI URL |
| [46] | D.M. Pozar, Microwave Engineering, John Wiley, 2005. |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
