J. Mater. Sci. Technol. ›› 2022, Vol. 101: 60-70.DOI: 10.1016/j.jmst.2021.04.050
• Research Article • Previous Articles Next Articles
Weiting Lia, Xudong Yangb,*(
), Kunming Yanga, Chunnian Hea,c, Junwei Shaa, Chunsheng Shia, Yunhui Meid, Jiajun Lia, Naiqin Zhaoa,c,*(
)
Received:2021-03-04
Revised:2021-04-19
Accepted:2021-04-21
Published:2022-02-28
Online:2021-06-30
Contact:
Xudong Yang,Naiqin Zhao
About author:nqzhao@tju.edu.cn (N. Zhao)Weiting Li, Xudong Yang, Kunming Yang, Chunnian He, Junwei Sha, Chunsheng Shi, Yunhui Mei, Jiajun Li, Naiqin Zhao. Simultaneously optimizing pore morphology and enhancing mechanical properties of Al-Si alloy composite foams by graphene nanosheets[J]. J. Mater. Sci. Technol., 2022, 101: 60-70.
Fig. 1. Schematic diagram about the fabrication process of the GNSs@Cu/Al-Si composite foams. The GNSs@Cu was firstly prepared through in-situ template-assisted and the high-temperature calcination approaches. Then, the GNSs@Cu/Al-Si composite foams were synthesized by powder metallurgy foaming method.
Fig. 2. SEM and TEM images of the GNSs@Cu powders. SEM images of (a) 3D cellular network of the GNSs and (b) the Cu nanoparticles with the diameter of 20-100 nm. TEM images of (c) the GNSs after etching Cu nanoparticles and (d) the GNSs with the thickness of 3 nm.
Fig. 3. 2D visualization images of X-ray CT of the foams: (a) the Al-Si foams, (b) the 0.2 wt% GNSs@Cu/Al-Si composite foams, (c) the 0.4 wt% GNSs@Cu/Al-Si composite foams and (d) the 0.8 wt% GNSs@Cu/Al-Si composite foams. The pore morphologies inside the composite foams are homogenous for all foams.
Fig. 4. Digital photographic images of cross sections of the foams: (a, e) the Al-Si foams, (b, f) the 0.2 wt% GNSs@Cu/Al-Si composite foams, (c, g) the 0.4 wt% GNSs@Cu/Al-Si composite foams and (d, h) the 0.8 wt% GNSs@Cu/Al-Si composite foams. Compared to the Al-Si foams, the pore morphologies of the composite foams are notable refined.
Fig. 5. The statistical analysis of the pore parameters of the composite foams with different GNSs@Cu content. (a) Diameter, (b) standard deviation of pore size, (c) circle shape factor and (d) aspect ratio factor. The longitudinal coordinates are the frequency histograms of these four pore parameters located in specific ranges.
| GNSs contents (wt%) | Total pore numbers for calculation | Average pore size $\bar{D}$ (mm) | Standard deviation of average pore size |D2| | Circle shape factor $\bar{F_{cs}}$ | Aspect ratio factor $\bar{F_{ar}}$ |
|---|---|---|---|---|---|
| 0 | 280 | 3.59 | 0.65 | 0.85 | 1.59 |
| 0.2 | 287 | 2.96 | 0.56 | 0.88 | 1.49 |
| 0.4 | 295 | 2.45 | 0.52 | 0.91 | 1.38 |
| 0.8 | 254 | 2.92 | 0.69 | 0.84 | 1.62 |
Table 1 The statistical analysis of the pore average parameters of the composite foams with different GNSs@Cu content.
| GNSs contents (wt%) | Total pore numbers for calculation | Average pore size $\bar{D}$ (mm) | Standard deviation of average pore size |D2| | Circle shape factor $\bar{F_{cs}}$ | Aspect ratio factor $\bar{F_{ar}}$ |
|---|---|---|---|---|---|
| 0 | 280 | 3.59 | 0.65 | 0.85 | 1.59 |
| 0.2 | 287 | 2.96 | 0.56 | 0.88 | 1.49 |
| 0.4 | 295 | 2.45 | 0.52 | 0.91 | 1.38 |
| 0.8 | 254 | 2.92 | 0.69 | 0.84 | 1.62 |
Fig. 7. TEM characterizations of micropores. (a) TEM image of micropores of the 0.2 wt% GNSs@Cu/Al-Si composite foams. (b, c) High-resolution TEM images of selected area of (a). (d) TEM image of micropores of the 0.4 wt% GNSs@Cu/Al-Si composite foams. (e, f) High-resolution TEM image of selected area of (d).
Fig. 8. Microstructure characterizations of the nanoparticles in the Al matrix. (a) XRD results of the precipitates of the 0.4 wt% GNSs@Cu/Al-Si composite foams. TEM images of the (b) large amount precipitates in the 0.4 wt% GNSs@Cu/Al-Si composite foams and (c) peanut-like shape Si and Al2Cu precipitates (inset is the FFT pattern of Si and Al2Cu). (d) TEM and (e) high-resolution TEM images of rod shape Al4C3 precipitates. (insets are the FFT pattern of yellow box).
Fig. 9. Microstructure characterizations of the eutectic Si phase of the Al-Si foams. (a, b) OM and (c-e) SEM images. (f-h) EDS element mapping of (e). The Si precipitates exhibit 10-20 μm in length and 3-5 μm in width.
Fig. 10. Microstructure characterizations of the eutectic Si phase of the 0.4 wt% GNSs@Cu/Al-Si composite foams. (a, b) OM and (c-e) SEM images. (f-h) EDS element mapping of (e). The Si precipitates exhibit 3-5 μm in average diameter.
Fig. 11. TEM images of the eutectic Si precipitates of the 0.4 wt% GNSs@Cu/Al-Si composite foams: (a) single 141° reentrant and (b) double 141° reentrants are obviously observed at the edges of Si precipitates.
Fig. 12. Mechanical properties of the foams. (a) Compressive stress-strain curves, (b) energy absorption capacity curves and (c) the trend and nonlinear fitting of compression stress, plateau stress and energy absorption capacity of the GNSs@Cu/Al-Si composite foams with different GNSs@Cu content.
| Parameters | The curve of compression stress | The curve of plateau stress | The curve of energy absorption capacity |
|---|---|---|---|
| X0 | 0.39 | 0.35 | 0.34 |
| y0 | -2.48 | 2.04 | 1,54 |
| σ | 0.46 | 0.31 | 0.30 |
| A | 15.82 | 6.03 | 4.54 |
| R-square | 0.9766 | 0.9681 | 0.9868 |
Table 2 The parameters of Gaussian distribution curves for the compression stress, plateau stress and energy absorption capacity, respectively.
| Parameters | The curve of compression stress | The curve of plateau stress | The curve of energy absorption capacity |
|---|---|---|---|
| X0 | 0.39 | 0.35 | 0.34 |
| y0 | -2.48 | 2.04 | 1,54 |
| σ | 0.46 | 0.31 | 0.30 |
| A | 15.82 | 6.03 | 4.54 |
| R-square | 0.9766 | 0.9681 | 0.9868 |
| [1] | J. Banhart, Prog. Mater. Sci. 46 (2001) 559-632. |
| [2] | I.N. Orbulov, A. Szlancsik, Adv. Eng. Mater. 20 (2018) 1700980. |
| [3] | J. Marx, M. Portanova, A. Rabiei, Compos. Struct. 225 (2019) 111032. |
| [4] | T. Fiedler, K. Al-Sahlani, P.A. Linul, E. Linul, J. Alloys Compd. 813 (2020) 152181. |
| [5] | T. Wan, Y. Liu, C.X. Zhou, X. Chen, Y.X. Li, J. Mater. Sci. Technol. 62 (2021) 11-24. |
| [6] | Y.L. Mu, G.C. Yao, Mater. Sci. Eng. A 527 (2010) 1117-1119. |
| [7] | J.K. Khabushan, S.B. Bonabi, F.M. Aghbagh, A.K. Khabushan, Mater. Des. 55 (2014) 792-797. |
| [8] | Y. Li, Y. Jiang, B. Hu, Q. Li, Scr. Mater. 187 (2020) 262-267. |
| [9] | A. Jung, J. Luksch, S. Diebels, F. Schäfer, C. Motz, Mater. Des. 153 (2018) 104-119. |
| [10] | P. Schüler, R. Frank, D. Uebel, S.F. Fischer, A. Bührig-Polaczek, C. Fleck, Acta Mater 109 (2016) 32-45. |
| [11] | A. Jung, Z. Chen, J. Schmauch, C. Motz, S. Diebels, Acta Mater 102 (2016) 38-48. |
| [12] | M. Zarif, B. Mckay, P. Schumacher, Metall. Mater. Trans. A 42 (2011) 1684-1691. |
| [13] | Q.Y. Liu, Q.C. Li, Q.F. Liu, Acta Metall. Mater. 39 (1991) 2497-2502. |
| [14] | J.H. Li, S. Suetsugu, Y. Tsunekawa, P. Schumacher, Metall. Mater. Trans. A 44 (2013) 669-681. |
| [15] | J.H. Li, X.D. Wang, T.H. Ludwig, Y. Tsunekawa, L. Arnberg, J.Z. Jiang, P. Schu- macher, Acta Mater 84 (2015) 153-163. |
| [16] | Z.Q. Guo, D.H. Ma, X.G. Yuan, X. Dong, Rare Met. Mater. Eng. 45 (2016) 3068-3073. |
| [17] | K. Wang, H.Y. Jiang, Y.X. Wang, Q.D. Wang, B. Ye, W.J. Ding, Mater. Des. 95 (2016) 545-554. |
| [18] | M.K. Akbari, H.R. Baharvandi, K. Shirvanimoghaddam, Mater. Des. 95 (2016) 150-161. |
| [19] | S.M. Hosseini, A. Habibolahzadeh, V. Králík, V. Petránová, J. Neme cek, Mater. Sci. Eng. A 680 (2017) 157-167. |
| [20] | B.S. Murray, R. Ettelaie, Curr. Opin. Colloid. In. 9 (2004) 314-320. |
| [21] | I. Duarte, J.M. Ferreira, Materials (Basel) 9 (2016) 79. |
| [22] | Y.C. Ma, X.D. Yang, C.N. He, K.M. Yang, J.L. Xu, J.W. Sha, C.S. Shi, J.J. Li, N.Q. Zhao, Mater. Lett. 233 (2018) 351-354. |
| [23] | C.G. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321 (2008) 385-388. |
| [24] | S.W. Feng, Q. Guo, Z. Li, G.L. Fan, Z.Q. Li, D.B. Xiong, Y.S. Su, Z.Q. Tan, J. Zhang, D. Zhang, Acta Mater 125 (2017) 98-108. |
| [25] | Y.Y. Zhang, X.D. Li, Nano Lett 17 (2017) 6907-6915. |
| [26] | X. Zhang, C.S. Shi, E.Z. Liu, F. He, L.Y. Ma, Q.Y. Li, J.J. Li, W. Bacsa, N.Q. Zhao, C.N. He, Nanoscale 9 (2017) 11929-11938. |
| [27] | S.L. Xiang, X.S. Hu, X.J. Wang, L.D. Wang, K. Wu, Mater. Sci. Eng. A 724 (2018) 348-356. |
| [28] | H.T. Zhou, Y.J. Su, N. Liu, F.T. Kong, X.P. Wang, X. Zhang, Y.Y. Chen, Mater. Char- act. 138 (2018) 1-10. |
| [29] | W.S. Yang, G.Q. Chen, J. Qiao, S.F. Liu, R. Xiao, R.H. Dong, Mater. Sci. Eng. A 700 (2017) 351-357. |
| [30] | W.T. Li, X.D. Yang, C.N. He, J.W. Sha, C.S. Shi, J.J. Li, N.Q. Zhao, Carbon N Y 153 (2019) 396-406. |
| [31] | Y.K. An, S.Y. Yang, H.Y. Wu, E.T. Zhao, Z.S. Wang, Mater. Des. 134 (2017) 44-53. |
| [32] | K.M. Yang, X.D. Yang, E.Z. Liua, C.S. Shi, L.Y. Ma, C.N. He, Q.Y. Li, J.J. Li, N.Q. Zhao, Mater. Sci. Eng. A 729 (2018) 4 87-4 95. |
| [33] | W. Zhang, S.S. Ao, J.P. Oliveira, C.J. Li, Z. Zeng, A.Q. Wang, Z. Luo, Scr. Mater. 178 (2020) 414-417. |
| [34] | X. Zhang, C.S. Shi, E.Z. Liu, N.Q. Zhao, C.N. He, ACS Appl. Mater. Interfaces 10 (2018) 37586-37601. |
| [35] | J. Qin, C.N. He, N.Q. Zhao, Z.Y. Wang, C.S. Shi, E.Z. Liu, J.J. Li, ACS Nano 8 (2014) 1728-1738. |
| [36] | A. Vaško, Mater, Today Proc 3 (2016) 1199-1204. |
| [37] | J. Banhart, D. Bellmann, H. Clemens, Acta Mater 49 (2001) 3409-3420. |
| [38] | A. Rack, H.-.M. Helwig, A. Butow, A. Rueda, B. Matijasevic-Lux, L. Helfen, J. Goebbels, J. Banhart, Acta Mater 57 (2009) 4809-4821. |
| [39] | M. Mukherjee, F. García-Moreno, C. Jimenez, A. Rack, J. Banhart, Acta Mater 131 (2017) 156-168. |
| [40] | S.N. Sahua, A. Gokhale, A. Mehr, J. Mater. Process. Technol. 214 (2014) 1-12. |
| [41] | P.H. Kamm, F. Garcia-Moreno, T.R. Neu, K. Heim, R. Mokso, J. Banhart, Adv. Eng. Mater. 19 (2017) 1600550. |
| [42] | Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190. |
| [43] | M. Blander, Adv. Colloid Interfaces 10 (1979) 1-32. |
| [44] | E. Hernández-Baltazar, J. Gracia-Fadrique, J. Colloid Interface Sci. 287 (2005) 213-216. |
| [45] | J. Viades-Trejo, J. Gracia-Fadrique, Colloids Surf. A: Physicochem.Eng. 302 (2007) 549-552. |
| [46] | R.J. Pugh, Adv. Colloid Interfaces 64 (1996) 67-142. |
| [47] | E. Rio, W. Drenckhan, A. Salonen, D. Langevin, Adv. Colloid Interfaces 205 (2014) 74-86. |
| [48] | A. Dudka, F. Garcia-Moreno, N. Wanderka, J. Banhart, Acta Mater 56 (2008) 3990-4001. |
| [49] | K. Heim, F. García-Moreno, J. Banhart, Scr.Mater. 153 (2018)54-58. |
| [50] | S.M. Hosseini, A. Habibolahzadeh, V. PetráŇová, J. Ňeme ček,, Mater.Des. 97 (2016) 483-491. |
| [51] | W.F. Miao, D.E. Laughlin, Metall. Mater. Trans. A 31 (2000) 361-371. |
| [52] | W.W. Zhou, S.R. Bang, H. Kurita, T. Miyazaki, Y.C. Fan, A. Kawasaki, Carbon N Y 96 (2016) 919-928. |
| [53] | S.Z. Lu, A. Hellawell, J. Cryst. Growth 73 (1985) 316-328. |
| [54] | M. Shamsuzzoha, L.M. Hogan, J. Cryst. Growth 76 (1986) 429-439. |
| [55] | D.R. Hamilton, R.G. Seidensticker, J. Appl. Phys. 31 (1960) 1165-1168. |
| [56] | J.G. Jung, T.Y. Ahn, Y.H. Cho, S.H. Kim, J.M. Lee, Acta Mater 144 (2018) 31-40. |
| [57] | S.Z. Lu, A. Hellawell, Metall. Mater. Trans. A 18 (1987) 1721-1733. |
| [58] | K.F. Kobayashi, L.M. Hogan, J. Mater. Sci. 20 (1985) 1961-1975. |
| [59] | J.H. Li, M. Albu, F. Hofer, P. Schumacher, Acta Mater 83 (2015) 187-202. |
| [60] | J. Banhart, J. Baumeister, J. Mater. Sci. 33 (1998) 1431-1440. |
| [61] | R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, R. Martínez-Sánchez, J. Alloys Compd. 615 (2014) S578-S582. |
| [62] | Z.W. Zhang, Z.Y. Liu, B.L. Xiao, D.R. Ni, Z.Y. Ma, Carbon N Y 135 (2018) 215-223. |
| [63] | T.S. Biro, R. Rosenfeld, Phys. A 387 (2008) 1603-1612. |
| [1] | Jingqi Chen, Xianlei Hu, Haitao Gao, Shu Yan, Shoudong Chen, Xianghua Liu. Graphene-wrapped MnCO3/Mn3O4 nanocomposite as an advanced anode material for lithium-ion batteries: Synergistic effect and electrochemical performances [J]. J. Mater. Sci. Technol., 2022, 99(0): 9-17. |
| [2] | Hyunjun Park, Woong Kim, Sang Won Lee, Joohyung Park, Gyudo Lee, Dae Sung Yoon, Wonseok Lee, Jinsung Park. Flexible and disposable paper-based gas sensor using reduced graphene oxide/chitosan composite [J]. J. Mater. Sci. Technol., 2022, 101(0): 165-172. |
| [3] | Q. Yan, B. Chen, L. Cao, K.Y. Liu, S. Li, L. Jia, K. Kondoh, J.S. Li. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides [J]. J. Mater. Sci. Technol., 2022, 96(0): 85-93. |
| [4] | Shuang Zhang, Fei Wang, Ping Huang. Enhanced Hall-Petch strengthening in graphene/Cu nanocomposites [J]. J. Mater. Sci. Technol., 2021, 87(0): 176-183. |
| [5] | Ali Aldalbahi, Edmund Samuel, Bander S. Alotaibi, Hany El-Hamshary, Sam S. Yoon. Reduced graphene oxide supersonically sprayed on wearable fabric and decorated with iron oxide for supercapacitor applications [J]. J. Mater. Sci. Technol., 2021, 82(0): 47-56. |
| [6] | Rahul Franklin, Weiheng Xu, Dharneedar Ravichandran, Sayli Jambhulkar, Yuxiang Zhu, Kenan Song. Reinforcing carbonized polyacrylonitrile fibers with nanoscale graphitic interface-layers [J]. J. Mater. Sci. Technol., 2021, 95(0): 78-87. |
| [7] | Yanqi Ma, Haowei Huang, Hongda Zhou, Michael Graham, James Smith, Xinxin Sheng, Ying Chen, Li Zhang, Xinya Zhang, Elena Shchukina, Dmitry Shchukin. Superior anti-corrosion and self-healing bi-functional polymer composite coatings with polydopamine modified mesoporous silica/graphene oxide [J]. J. Mater. Sci. Technol., 2021, 95(0): 95-104. |
| [8] | Zuoting Yang, Ke Yang, Yuhong Cui, Tariq Shah, Mudasir Ahmad, Qiuyu Zhang, Baoliang Zhang. Synthesis of surface imprinted polymers based on wrinkled flower-like magnetic graphene microspheres with favorable recognition ability for BSA [J]. J. Mater. Sci. Technol., 2021, 74(0): 203-215. |
| [9] | Tielong Han, Fucheng Wang, Jiajun Li, Chunnian He, Naiqin Zhao. Effect of GNPs on microstructures and mechanical properties of GNPs/Al-Cu composites with different heat treatment status [J]. J. Mater. Sci. Technol., 2021, 92(0): 1-10. |
| [10] | Fang Bian, XinGe Wu, ShanShan Li, GaoWu Qin, XiangYing Meng, Yin Wang, HongWei Yang. Role of transport polarization in electrocatalysis: A case study of the Ni-cluster/Graphene interface [J]. J. Mater. Sci. Technol., 2021, 92(0): 120-128. |
| [11] | Ning Sun, Wen Li, Shuang Wei, Hui Gao, Wei Wang, Shougang Chen. Facile synthesis of lightweight 3D hierarchical NiCo2O4 nanoflowers/reduced graphene oxide composite foams with excellent electromagnetic wave absorption performance [J]. J. Mater. Sci. Technol., 2021, 91(0): 187-199. |
| [12] | Wen Sun, Yanjia Yang, Zhengqing Yang, Lida Wang, Jing Wang, Dake Xu, Guichang Liu. Review on the corrosion-promotion activity of graphene and its inhibition [J]. J. Mater. Sci. Technol., 2021, 91(0): 278-306. |
| [13] | Yongjian Zhang, Guangzhu Bai, Xiaoyan Liu, Jingjie Dai, Xitao Wang, Hailong Zhang. Reinforcement size effect on thermal conductivity in Cu-B/diamond composite [J]. J. Mater. Sci. Technol., 2021, 91(0): 1-4. |
| [14] | Mei Yu, Jing Shang, Yu Kuang. Efficient photocatalytic reduction of chromium (VI) using photoreduced graphene oxide as photocatalyst under visible light irradiation [J]. J. Mater. Sci. Technol., 2021, 91(0): 17-27. |
| [15] | Xin Wang, Jiaqian Zhu, Xiang Yu, Xionghui Fu, Yi Zhu, Yuanming Zhang. Enhanced removal of organic pollutant by separable and recyclable rGH-PANI/BiOI photocatalyst via the synergism of adsorption and photocatalytic degradation under visible light [J]. J. Mater. Sci. Technol., 2021, 77(0): 19-27. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
