J. Mater. Sci. Technol. ›› 2021, Vol. 91: 17-27.DOI: 10.1016/j.jmst.2021.02.051
• Research Article • Previous Articles Next Articles
Mei Yu, Jing Shang*(), Yu Kuang
Received:
2020-12-11
Revised:
2021-02-20
Accepted:
2021-02-23
Published:
2021-11-20
Online:
2021-11-20
Contact:
Jing Shang
About author:
*E-mail address: shangjing@pku.edu.cn (J. Shang).Mei Yu, Jing Shang, Yu Kuang. Efficient photocatalytic reduction of chromium (VI) using photoreduced graphene oxide as photocatalyst under visible light irradiation[J]. J. Mater. Sci. Technol., 2021, 91: 17-27.
Fig. 2. Photos of (a) GO, (b) rGO-1, (c) rGO-3, (d) rGO-6, (e) rGO-9, and (f) rGO-12. AFM images of (g) GO, (h) rGO-1, (i) rGO-3, (j) rGO-6, (k) rGO-9, and (l) rGO-12.
Fig. 4. (a) Oxygen/carbon ratio (RO/C) of GO and rGO-X samples with reduction time. (b) Peak deconvolution of XPS C1s spectra of GO and rGO-12. (c) Atomic percentage of carbon compositions of GO and rGO-X samples with reduction time.
Sample | GO | rGO-0.25 | rGO-1 | rGO-2 | rGO-3 | rGO-6 | rGO-9 | rGO-12 |
---|---|---|---|---|---|---|---|---|
PFR1 | 0.353 | 1.534 | 2.716 | 3.716 | 5.398 | 7.015 | 6.558 | 6.151 |
PFR2 | 0 | 0 | 0 | 0 | 0 | 0 | 3.192 | 4.008 |
Table 1 PFR content in ×1013 spins (mg mL-1)-1 of GO and rGO-X (X = 0.25, 1, 2, 3, 6, 9, 12).
Sample | GO | rGO-0.25 | rGO-1 | rGO-2 | rGO-3 | rGO-6 | rGO-9 | rGO-12 |
---|---|---|---|---|---|---|---|---|
PFR1 | 0.353 | 1.534 | 2.716 | 3.716 | 5.398 | 7.015 | 6.558 | 6.151 |
PFR2 | 0 | 0 | 0 | 0 | 0 | 0 | 3.192 | 4.008 |
Fig. 7. (a) ESR spectra of TEMPO for rGO-1 suspension irradiated for 0, 10, and 15 min under visible light. (b) Trend of the slope of the decay curve of TEMPO content in GO and different rGO-X samples with reduction time.
Fig. 8. (a) Photocatalytic reduction of aqueous Cr(VI) by GO/rGO-X and TiO2 at pH 2. (b) The rate constant k of GO and rGO-X at pH 2. (c) Recycling performance of rGO-1 with adding CA at pH 2. (d) The rate constant k of rGO-1 at different pH. (e) Reduction kinetics of Cr(Ⅵ) in the presence or absence of hole trapping agent (CA) at pH 2. (f) Influences of initial concentration of Cr(VI) solution on the Cr(VI) removal rates by rGO-1 at pH 2.
Systems | pH | [Cr(Ⅵ)](mg L-1) | Catalyst dosage(mg) | The Role of GO/rGO | Removal Efficiency (L-1 min-1) | Light Source | Ref. |
---|---|---|---|---|---|---|---|
UiO-66(NH2) -rGO2% | 2 | 10 | 20 | co-catalyst | 5.0 | Xe lamp (λ ≥ 420 nm). | [ |
ZnO /rGO-1% | 10 | 60 | co-catalyst | 2.7 | 500 W high pressure Hg lamp)365nm( | [ | |
CQDs-TiO2-x /rGO | 5.38 | 10 | 100 | co-catalyst | 1.0 | 300 W Xe lamp (λ > 420 nm( | [ |
Al4SiC4 /rGO-2.5% | 3 | 10 | 70 | co-catalyst | 2.3 | 300 W Xe lamp (λ > 400 nm) | [ |
TiO2 /rGO-5% | 3 | 10 | 100 | co-catalyst | 0.5 | 300 W Xe lamp )λ> 400 nm( | [ |
CdS /rGO-1.5% | 10 | 100 | co-catalyst | 0.4 | Visible Light | [ | |
ZnO S1 /rGO -5% | 6.8 | 10 | 30 | co-catalyst | 4.1 | UV light produced by 300 W Xe lamp | [ |
M53-rGO | 4 | 20 | 40 | co-catalyst | 6.3 | 300 W Xe lamp (420 nm≤λ ≤ 760 nm( | [ |
3D CuS /rGO aerogel | 3 | 20 | 80 | co-catalyst | 4.1 | Xe lamp )λ >420 nm( | [ |
GO | 3 | 9.36 | 80 | catalyst | 3.3 | 1500 W Xe lamp )λ >400 nm( | [ |
rGO-1 | 2 | 10 | 10 | catalyst | 6.4 | 500 W Xe lamp (420 nm≤λ ≤ 760 nm( | Our work |
Table 2 . Comparison of removal efficiency of photocatalytic reduction of Cr(VI) using GO-based materials either as co-catalyst or catalyst.
Systems | pH | [Cr(Ⅵ)](mg L-1) | Catalyst dosage(mg) | The Role of GO/rGO | Removal Efficiency (L-1 min-1) | Light Source | Ref. |
---|---|---|---|---|---|---|---|
UiO-66(NH2) -rGO2% | 2 | 10 | 20 | co-catalyst | 5.0 | Xe lamp (λ ≥ 420 nm). | [ |
ZnO /rGO-1% | 10 | 60 | co-catalyst | 2.7 | 500 W high pressure Hg lamp)365nm( | [ | |
CQDs-TiO2-x /rGO | 5.38 | 10 | 100 | co-catalyst | 1.0 | 300 W Xe lamp (λ > 420 nm( | [ |
Al4SiC4 /rGO-2.5% | 3 | 10 | 70 | co-catalyst | 2.3 | 300 W Xe lamp (λ > 400 nm) | [ |
TiO2 /rGO-5% | 3 | 10 | 100 | co-catalyst | 0.5 | 300 W Xe lamp )λ> 400 nm( | [ |
CdS /rGO-1.5% | 10 | 100 | co-catalyst | 0.4 | Visible Light | [ | |
ZnO S1 /rGO -5% | 6.8 | 10 | 30 | co-catalyst | 4.1 | UV light produced by 300 W Xe lamp | [ |
M53-rGO | 4 | 20 | 40 | co-catalyst | 6.3 | 300 W Xe lamp (420 nm≤λ ≤ 760 nm( | [ |
3D CuS /rGO aerogel | 3 | 20 | 80 | co-catalyst | 4.1 | Xe lamp )λ >420 nm( | [ |
GO | 3 | 9.36 | 80 | catalyst | 3.3 | 1500 W Xe lamp )λ >400 nm( | [ |
rGO-1 | 2 | 10 | 10 | catalyst | 6.4 | 500 W Xe lamp (420 nm≤λ ≤ 760 nm( | Our work |
[1] | J. Qu, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Appl. Catal. B-Environ. 207(2017) 404-411. |
[2] | F.-.Q. Shao, J.-.J. Feng, X.-.X. Lin, L.-.Y. Jiang, A.-.J. Wang, Appl. Catal. B-Environ. 208(2017) 128-134. |
[3] | C.-.C. Wang, X.-.D. Du, J. Li, X.-.X. Guo, P. Wang, J. Zhang , Appl. Catal. B-Environ. 193(2016) 198-216. |
[4] | Z. Zhao, H. An, J. Lin, M. Feng, V. Murugadoss, T. Ding, H. Liu, Q. Shao, X. Mai, N. Wang, H. Gu, S. Angaiah, Z. Guo, Chem. Rec. 19(2019) 873-882. |
[5] | T.N. Ravishankar, G. Nagaraju, J. Dupont, Mater. Res. Bull. 78(2016) 103-111. |
[6] | X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun, C. Sun, Chem. Eng. J. 183(2012) 238-243. |
[7] | C. Xue, X. Yan, H. An, H. Li, J. Wei, G. Yang, Appl. Catal. B-Environ. 222(2018) 157-166. |
[8] | X. Bai, Y. Du, X. Hu, Y. He, C. He, E. Liu, J. Fan, Appl. Catal. B-Environ. 239(2018) 204-213. |
[9] | L. Xu, L. Yang, X. Bai, X. Du, Y. Wang, P. Jin, Chem. Eng. J. 373(2019) 238-250. |
[10] | D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39(2010) 228-240. |
[11] | L.K. Putri, L.-.L. Tan, W.-.J. Ong, W.S. Chang, S.-.P. Chai, Appl. Mater. Today 4(2016) 9-16. |
[12] | L. Zhang, S. Diao, Y. Nie, K. Yan, N. Liu, B. Dai, Q. Xie, A. Reina, J. Kong, Z. Liu. J. Am. Chem. Soc. 133(2011) 2706-2713. |
[13] | X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 41(2012) 666-686. |
[14] | G.-.M. Shi, B. Zhang, X.-.X. Xu, Y.-.H. Fu , Dalton Trans. 44(2015) 11155-11164. |
[15] | R.J.W.E. Lahaye, H.K. Jeong, C.Y. Park, Y.H. Lee, Phys. Rev. B 79 (2009). |
[16] | G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, J. Phys. Chem. C 113(2009) 15768-15771. |
[17] | H.-.C. Hsu, I. Shown, H.-.Y. Wei, Y.-.C. Chang, H.-.Y. Du, Y.-.G. Lin, C.-.A. Tseng, C.-.H. Wang, L.-.C. Chen, Y.-.C. Lin, K.-.H. Chen, Nanoscale 5(2013) 262-268. |
[18] | Y. Kuang, J. Shang, T. Zhu, Acs Appl. Mater. Interfaces 12(2020) 3580-3591. |
[19] | X.H. Tai, S.W. Chook, C.W. Lai, K.M. Lee, T.C.K. Yang, S. Chong, J.C. Juan , Rsc Adv. 9(2019) 18076-18086. |
[20] | K. Krishnamoorthy, R. Mohan, S.J. Kim, Appl. Phys. Lett. 98(2011). |
[21] | S.S. Wu, W.C. Hou, D.K. Wang, Environ.-Sci. Nano 7(2020) 2399-2409. |
[22] | Y. Matsumoto, M. Koinuma, S.Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, S. Ida, Acs Appl. Mater. Interfaces 2(2010) 3461-3466. |
[23] | W.-.C. Hou, I. Chowdhury, D.G. Goodwin Jr., W.M. Henderson, D.H. Fairbrother, D. Bouchard, R.G. Zepp, Environ. Sci. Technol. 49(2015) 3435-3443. |
[24] | I. Chowdhury, M.C. Duch, N.D. Mansukhani, M.C. Hersam, D. Bouchard, Envi- ron. Sci. Technol. 47(2013) 6288-6296. |
[25] | X. Yuan, D. Peng, Q. Jing, J. Niu, X. Cheng, Z. Feng, X. Wu, Nanomaterials, 8(2018). |
[26] | S.R. Kim, M.K. Parvez, M. Chhowalla, Chem. Phys. Lett. 483(2009) 124-127. |
[27] | B. Xue, Y. Zou, Y. Yang, JMatS 52(2017) 12742-12750. |
[28] | T.-.F. Yeh, F.-.F. Chan, C.-.T. Hsieh, H. Teng, J. Phys. Chem. C 115(2011) 22587-22597. |
[29] | C.Y. Kong, W.-.L. Song, M.J. Meziani, K.N. Tackett II, L. Cao, A.J. Farr, A. Ander- son, Y.-.P. Sun, J. Supercrit. Fluids 61(2012) 206-211. |
[30] | D.G. Goodwin Jr., A.S. Adeleye, L. Sung, K.T. Ho, R.M. Burgess, E.J. Petersen, En- viron. Sci. Technol. 52(2018) 4491-4513. |
[31] | T. Du, A.S. Adeleye, T. Zhang, C. Jiang, M. Zhang, H. Wang, Y. Li, A.A. Keller, W. Chen, Environ. Sci.-Nano 5(2018) 2590-2603. |
[32] | Y. Tu, H. Nakamoto, T. Ichii, T. Utsunomiya, O.P. Khatri, H. Sugimura, Carbon 119 (2017) 82-90. |
[33] | Y. Matsumoto, M. Koinuma, S. Ida, S. Hayami, T. Taniguchi, K. Hatakeyama, H. Tateishi, Y. Watanabe, S. Amano, J. Phys. Chem. C 115(2011) 19280-19286. |
[34] | J. Di, X. Zhao, C. Lian, M. Ji, J. Xia, J. Xiong, W. Zhou, X. Cao, Y. She, H. Liu, K.P. Loh, S.J. Pennycook, H. Li, Z. Liu, Nano Energy 61 (2019) 54-59. |
[35] | M. Koinuma, C. Ogata, Y. Kamei, K. Hatakeyama, H. Tateishi, Y. Watanabe, T. Taniguchi, K. Gezuhara, S. Hayami, A. Funatsu, M. Sakata, Y. Kuwahara, S. Kurihara, Y. Matsumoto, J. Phys. Chem. C 116 (2012) 19822-19827. |
[36] | J. Ito, J. Nakamura, A. Natori, J. Appl. Phys. 103(2008). |
[37] | H. Huang, Z. Li, J. She, W. Wang. J. Appl. Phys.(2012) 111. |
[38] | A. Radon, P. Wlodarczyk, D. Lukowiec, Physica E-Low-Dimensional Systems & Nanostructures 99 (2018) 82-90. |
[39] | G. Yang, L. Li, W.B. Lee, M.C. Ng, Sci. Technol. Adv. Mater. 19(2018) 613-648. |
[40] | Z.K. Nia, J.-.Y. Chen, B. Tang, B. Yuan, X.-.G. Wang, J.-.L. Li, Carbon 116 (2017) 703-712. |
[41] | R. McIntosh, M.A. Mamo, B. Jamieson, S. Roy, S. Bhattacharyya, Epl(2012) 97. |
[42] | S. Zhao, D. Miao, K. Zhu, K. Tao, C. Wang, V.K. Sharma, H. Jia, Environ. Int. 129(2019) 154-163. |
[43] | Y. Cherifi, A. Barras, A. Addad, B. Ouddane, P. Roussel, A. Chaouchi, S. Szunerits, R. Boukherroub, Chemosphere 268 (2021) 128798-128798. |
[44] | M. Li, Q. Hu, H. Shan, W. Yu, Z.-.X. Xu, Chemosphere 263(2021). |
[45] | W. Raza, M. Faraz, Nanot 31(2020). |
[46] | G.K. Ramesha, A.V. Kumara, H.B. Muralidhara, S. Sampath, J. Colloid Interface Sci. 361(2011) 270-277. |
[47] | T. Fan, C. Chen, Z. Tang, Y. Ni, C. Lu, Mater. Sci. Semicond. Process. 40(2015) 439-445. |
[48] | R. Djellabi, F.M. Ghorab, S. Nouacer, A. Smara, O. Khireddine, Mater. Lett. 176(2016) 106-109. |
[49] | Z. Fang, Q. Li, L. Su, J. Chen, K.-.C. Chou, X. Hou, Appl. Catal. B-Environ. 241(2019) 548-560. |
[50] | L. Liu, C. Luo, J. Xiong, Z. Yang, Y. Zhang, Y. Cai, H. Gu. J. Alloys. Compd. 690(2017) 771-776. |
[51] | X. Liu, L. Pan, T. Lv, G. Zhu, Z. Sun, C. Sun, Chem. Commun. 47(2011) 11984-11986. |
[52] | Y. Zhang, Z. Chen, S. Liu, Y.-.J. Xu, Appl.Catal. B-Environ. 140(2013) 598-607. |
[53] | R. Liang, L. Shen, F. Jing, N. Qin, L. Wu, Acs Appl. Mater. Interfaces 7 (2015) 9507-9515. |
[54] | Z. Bano, R.M.Y.F. Wang, Chemosphere, 246 (2020). |
[55] | X. Hu, Y. Zhao, H. Wang, X. Cai, X. Hu, C. Tang, Y. Liu, Y. Yang, J. Chem. Technol. Biotechnol. 93(2018) 2226-2233. |
[56] | F. Zhang, Y. Zhang, G. Zhang, Z. Yang, D.D. Dionysiou, A. Zhu, Appl. Catal. B-En- viron. 236(2018) 53-63. |
[57] | H. Wang, Y.-gG. Liu, G.-mM. Zeng, X.-jJ. Hu, X. Hu, T.-tT. Li, H.-yY. Li, Y.-qQ. Wang, L.-hH. Jiang , Carbohydr. Polym. 113(2014) 166-173. |
[58] | Y. Huang, G. Ruan, Y. Ruan, W. Zhang, X. Li, F. Du, C. Hu, J. Li, RSC Adv. 8(2018) 13417-13422. |
[59] | X. Jiang, J. Nisar, B. Pathak, J. Zhao, R. Ahuja. J. Catal. 299(2013) 204-209. |
[60] | L. Yang, Y. Xiao, S. Liu, Y. Li, Q. Cai, S. Luo, G. Zeng, Appl. Catal. B-Environ. 94(2010) 142-149. |
[61] | X. Wang, Y. Liang, W. An, J. Hu, Y. Zhu, W. Cui, Appl. Catal. B-Environ. 219(2017) 53-62. |
[62] | Y. Zhao, D. Zhao, C. Chen, X. Wang, J. Colloid Interface Sci. 405(2013) 211-217. |
[63] | Y. Liu, D. Yang, T. Xu, Y. Shi, L. Song, Chem. Eng. J. 379 (2020). |
[1] | Xin Wang, Jiaqian Zhu, Xiang Yu, Xionghui Fu, Yi Zhu, Yuanming Zhang. Enhanced removal of organic pollutant by separable and recyclable rGH-PANI/BiOI photocatalyst via the synergism of adsorption and photocatalytic degradation under visible light [J]. J. Mater. Sci. Technol., 2021, 77(0): 19-27. |
[2] | Weiwei Xiao, Na Ni, Xiaohui Fan, Xiaofeng Zhao, Yingzheng Liu, Ping Xiao. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide [J]. J. Mater. Sci. Technol., 2021, 60(0): 70-76. |
[3] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
[4] | Cheng-Fei Cao, Wen-Jun Liu, Hui Xu, Ke-Xin Yu, Li-Xiu Gong, Bi-Fan Guo, Yu-Tong Li, Xiao-Lan Feng, Ling-Yu Lv, Hong-Tao Pan, Li Zhao, Jia-Yun Li, Jie-Feng Gao, Guo-Dong Zhang, Long-Cheng Tang. Temperature-induced resistance transition behaviors of melamine sponge composites wrapped with different graphene oxide derivatives [J]. J. Mater. Sci. Technol., 2021, 85(0): 194-204. |
[5] | Ning Sun, Wen Li, Shuang Wei, Hui Gao, Wei Wang, Shougang Chen. Facile synthesis of lightweight 3D hierarchical NiCo2O4 nanoflowers/reduced graphene oxide composite foams with excellent electromagnetic wave absorption performance [J]. J. Mater. Sci. Technol., 2021, 91(0): 187-199. |
[6] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[7] | Ali Aldalbahi, Edmund Samuel, Bander S. Alotaibi, Hany El-Hamshary, Sam S. Yoon. Reduced graphene oxide supersonically sprayed on wearable fabric and decorated with iron oxide for supercapacitor applications [J]. J. Mater. Sci. Technol., 2021, 82(0): 47-56. |
[8] | Xiaohui Zhang, Yi Zhang, Baohong Tian, Yanlin Jia, Ming Fu, Yong Liu, Kexing Song, Alex.A. Volinsky, Xiao Yang, Hang Sun. Graphene oxide effects on the properties of Al2O3-Cu/35W5Cr composite [J]. J. Mater. Sci. Technol., 2020, 37(0): 185-199. |
[9] | O. Kapitanova Olesya, V. Emelin Evgeny, G. Dorofeev Sergey, V. Evdokimov Pavel, N. Panin Gennady, Lee Youngmin, Lee Sejoon. Direct patterning of reduced graphene oxide/graphene oxide memristive heterostructures by electron-beam irradiation [J]. J. Mater. Sci. Technol., 2020, 38(0): 237-243. |
[10] | Myung-Sic Chae, Tae Ho Lee, Kyung Rock Son, Tae Hoon Park, Kyo Seon Hwang, Tae Geun Kim. Electrochemically metal-doped reduced graphene oxide films: Properties and applications [J]. J. Mater. Sci. Technol., 2020, 40(0): 72-80. |
[11] | Hao Yu, Yi He, Guoqing Xiao, Yi Fan, Jing Ma, Yixuan Gao, Ruitong Hou, Jingyu Chen. Weak-reduction graphene oxide membrane for improving water purification performance [J]. J. Mater. Sci. Technol., 2020, 39(0): 106-112. |
[12] | Xueying Yang, Cuili Xiang, Yongjin Zou, Jing Liang, Huanzhi Zhang, Erhu Yan, Fen Xu, Xuebu Hu, Qiong Cheng, Lixian Sun. Low-temperature synthesis of sea urchin-like Co-Ni oxide on graphene oxide for supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2020, 55(0): 223-230. |
[13] | Poulami Hota, Milon Miah, Saptasree Bose, Diptiman Dinda, Uttam K. Ghorai, Yan-Kuin Su, Shyamal K. Saha. Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application [J]. J. Mater. Sci. Technol., 2020, 40(0): 196-203. |
[14] | Khalid Hussain Thebo, Xitang Qian, Qinwei Wei, Qing Zhang, Hui-Ming Cheng, Wencai Ren. Reduced graphene oxide/metal oxide nanoparticles composite membranes for highly efficient molecular separation [J]. J. Mater. Sci. Technol., 2018, 34(9): 1481-1486. |
[15] | Jun Ma, Shaochun Tang, Junaid Ali Syed, Dongyun Su, Xiangkang Meng. High-performance asymmetric supercapacitors based on reduced graphene oxide/polyaniline composite electrodes with sandwich-like structure [J]. J. Mater. Sci. Technol., 2018, 34(7): 1103-1109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||