J. Mater. Sci. Technol. ›› 2021, Vol. 95: 78-87.DOI: 10.1016/j.jmst.2021.03.067
• Research Article • Previous Articles Next Articles
Rahul Franklina,1, Weiheng Xub,1, Dharneedar Ravichandranb, Sayli Jambhulkarb, Yuxiang Zhub, Kenan Songc,*()
Received:
2021-01-02
Revised:
2021-03-24
Accepted:
2021-03-27
Published:
2021-12-30
Online:
2021-05-24
Contact:
Kenan Song
About author:
* E-mail address: kenan.song@asu.edu (K. Song).Rahul Franklin, Weiheng Xu, Dharneedar Ravichandran, Sayli Jambhulkar, Yuxiang Zhu, Kenan Song. Reinforcing carbonized polyacrylonitrile fibers with nanoscale graphitic interface-layers[J]. J. Mater. Sci. Technol., 2021, 95: 78-87.
Fiber type | Fiber name | Compositions (wt%) | Processability and testability | |||||
---|---|---|---|---|---|---|---|---|
Interior and exterior layers | Middle layer | Spinnability# | Heat-treatment * | Mechanical testability+ | ||||
PAN/DMF (wt%) | GNP | CNT | ||||||
1-phase | 15%PAN | 15 | N/A | N/A | N/A | Y | Hot drawing at 110, 130, and 150 °C; stabilization at 280 °C for 1.5 h, carbonization at 1250 °C for 10 min | Y |
D-phase | 15%PAN/1%GNP-D | 15 | N/A | 1 | N/A | Y | N | |
3-Layered | 0%PAN/10%GNP-3 | 15 | 0 | 10 | 0 | Y | N | |
5%PAN/10%GNP-3 | 5 | 10 | 0 | Y | N | |||
10%PAN/10%GNP-3 | 10 | 10 | 0 | Y | N | |||
15%PAN/10%GNP-3 | 15 | 10 | 0 | N | Y | |||
15%PAN/1%GNP-3 | 15 | 1 | 0 | Y | Y | |||
15%PAN/1%CNT-3 | 15 | 0 | 1 | Y | Y |
Table 1 Summary of fiber terminology, compositions, processability, and testability.
Fiber type | Fiber name | Compositions (wt%) | Processability and testability | |||||
---|---|---|---|---|---|---|---|---|
Interior and exterior layers | Middle layer | Spinnability# | Heat-treatment * | Mechanical testability+ | ||||
PAN/DMF (wt%) | GNP | CNT | ||||||
1-phase | 15%PAN | 15 | N/A | N/A | N/A | Y | Hot drawing at 110, 130, and 150 °C; stabilization at 280 °C for 1.5 h, carbonization at 1250 °C for 10 min | Y |
D-phase | 15%PAN/1%GNP-D | 15 | N/A | 1 | N/A | Y | N | |
3-Layered | 0%PAN/10%GNP-3 | 15 | 0 | 10 | 0 | Y | N | |
5%PAN/10%GNP-3 | 5 | 10 | 0 | Y | N | |||
10%PAN/10%GNP-3 | 10 | 10 | 0 | Y | N | |||
15%PAN/10%GNP-3 | 15 | 10 | 0 | N | Y | |||
15%PAN/1%GNP-3 | 15 | 1 | 0 | Y | Y | |||
15%PAN/1%CNT-3 | 15 | 0 | 1 | Y | Y |
Fig. 2. Manufacturing of 3-layered composite fibers and post-treatment at three stages (drawing, stabilization, and carbonization) (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.).
Fig. 3. DSC curves of different heating rates for (a) 15%PAN, (b) 0%PAN/10%GNP-3, and (c) 10%PAN/10%GNP-3 fibers in nitrogen, followed by their corresponding re-runs in the air (d), (e), and (f). Plots of ln(φ/Tm2) versus 1/Tm according to the Kissinger method for activation energies of (g) cyclization, (h) oxidation, and (i) crosslinking reactions [33].
15%PAN | 0%PAN/10%GNP-3 | 10%PAN/10%GNP-3 | |
---|---|---|---|
Cyclization | 146.5 | 151.8 | 144.5 |
Oxidation | 84.2 | 77.5 | 88.4 |
Crosslinking | 138.5 | 112.1 | 132.4 |
Table 2 Activation energies determined from the Kissinger method (kJ/mol).
15%PAN | 0%PAN/10%GNP-3 | 10%PAN/10%GNP-3 | |
---|---|---|---|
Cyclization | 146.5 | 151.8 | 144.5 |
Oxidation | 84.2 | 77.5 | 88.4 |
Crosslinking | 138.5 | 112.1 | 132.4 |
Fig. 4. Cross-sectional SEM images of the pre-carbonized and post-carbonized (a1-a3) 0%PAN/10%GNP-3, (b1-b3) 5%PAN/10%GNP-3, (c1-c3) 10%PNA/10%GNP-3, and (d1-d3) 15%PAN/1%GNP-3 fibers with zoomed-in sections on the middle carbonized GNP/PAN layer.
Fig. 5. Mechanical properties of the fibers prior to stabilization. (a) The effect of increasing PAN concentration in the middle layer. (b) Comparison between 15%PAN and 1 wt% nanoparticle loaded fibers with and without layered structures. (c) Schematic of the change in GNP orientation resulted from the relative molecular movements on internal (blue) and external (red) surfaces of graphene layers, resulting in aligned the GNPs in the fiber axial direction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Pre- stabilized fibers | Carbonized fibers | |||||
---|---|---|---|---|---|---|
E (GPa) | σ (MPa) | ε (%) | E (GPa) | σ (MPa) | ε (%) | |
15%PAN | 9.3 ± 1.8 | 280.5 ± 44.6 | 8.1 ± 0.1 | 42.3 ± 11.4 | 320.4 ± 110.8 | 1.5 ± 0.5 |
15%PAN/1%GNP-D | 4.4 ± 0.8 | 190.2 ± 47.3 | 6.8 ± 6.2 | Non-collectable after carbonization due to fiber fracture in heat-treatment procedures (Fig. S4 in the Supporting Information) | ||
0%PAN/10%GNP-3 | 1.3 ± 0.2 | 39.8 ± 5.1 | 8.4 ± 0.6 | |||
5%PAN/10%GNP-3 | 4.5 ± 0.7 | 190.2 ± 26.9 | 10.2 ± 1.4 | |||
10%PAN/10%GNP-3 | 11.1 ± 0.9 | 420.2 ± 30.1 | 8.2 ± 1.1 | |||
15%PAN/1%GNP-3 | 9.0 ± 1.0 | 340.3 ± 25.7 | 9.4 ± 1.3 | 74.6 ± 17.6 | 440.2 ± 150.5 | 1.3 ± 0.6 |
15%PAN/1%CNT-3 | 9.8 ± 1.5 | 320.4 ± 41.2 | 9.6 ± 1.0 | 38.9 ± 22.2 | 290.7 ± 140.4 | 1.1 ± 0.9 |
Table 3 Mechanical properties before and after carbonization.
Pre- stabilized fibers | Carbonized fibers | |||||
---|---|---|---|---|---|---|
E (GPa) | σ (MPa) | ε (%) | E (GPa) | σ (MPa) | ε (%) | |
15%PAN | 9.3 ± 1.8 | 280.5 ± 44.6 | 8.1 ± 0.1 | 42.3 ± 11.4 | 320.4 ± 110.8 | 1.5 ± 0.5 |
15%PAN/1%GNP-D | 4.4 ± 0.8 | 190.2 ± 47.3 | 6.8 ± 6.2 | Non-collectable after carbonization due to fiber fracture in heat-treatment procedures (Fig. S4 in the Supporting Information) | ||
0%PAN/10%GNP-3 | 1.3 ± 0.2 | 39.8 ± 5.1 | 8.4 ± 0.6 | |||
5%PAN/10%GNP-3 | 4.5 ± 0.7 | 190.2 ± 26.9 | 10.2 ± 1.4 | |||
10%PAN/10%GNP-3 | 11.1 ± 0.9 | 420.2 ± 30.1 | 8.2 ± 1.1 | |||
15%PAN/1%GNP-3 | 9.0 ± 1.0 | 340.3 ± 25.7 | 9.4 ± 1.3 | 74.6 ± 17.6 | 440.2 ± 150.5 | 1.3 ± 0.6 |
15%PAN/1%CNT-3 | 9.8 ± 1.5 | 320.4 ± 41.2 | 9.6 ± 1.0 | 38.9 ± 22.2 | 290.7 ± 140.4 | 1.1 ± 0.9 |
Fig. 6. Polarized Raman spectroscopy study on the orientation of GNPs and CNTs for the 3-layered structure. (a) Cross-sectional SEM images of the 15%PAN/1%GNP-3 with zoomed-in section showing aligned GNP. (b) Schematic showing the two Raman incident points on the middle and edge of the middle layer with optical images showing the rotation of 90° for both sections. The corresponding Raman signal for the edge and middle sections for (c1, c2) 15%PAN/1%GNP-3 and (e1 and e2) 15%PAN/1%CNT-3. (d1-d3) are the schematics for the orientations of GNP (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.).
Fig. 7. Electrical and VOCs sensing performances. (a) The conductivity of three selected carbonized fibers at 1250 °C. (b) VOC sensing setup. Chemiresistive response of (c) HT-15%PAN/1%GNP-3 fiber and (d) HT-15%PAN fiber to various concentrations of methanol for 30 s. The zoomed-in sections are the response for 30 ppm concentration. (e) Response magnitude and their SNR with increasing concentrations for the two tested fibers. (f) The cyclical performance of the HT-15%PAN/1%GNP-3 fiber with various methanol concentrations.
[1] |
M.S.A. Rahaman. A.F. Ismail, A. Mustafa, Polym. Degrad. Stab. 92 (2007) 1421-1432.
DOI URL |
[2] |
L. Penn, F. Larsen, J. Appl. Polym. Sci. 23 (1979) 59-73.
DOI URL |
[3] |
G. Srinivasan, D.H. Reneker, Polym. Int. 36 (1995) 195-201.
DOI URL |
[4] |
G.B. Kauffman, J. Chem. Educ. 70 (1993) 887-893.
DOI URL |
[5] | G. Henrici-Olivé, S. Olivé, Adv. Polym. Sci. 51 (1983) 1-60. |
[6] |
B.J. Kim, Y. Eom, O. Kato, J. Miyawaki, B.C. Kim, I. Mochida, S.H. Yoon, Carbon NY. 77 (2014) 747-755.
DOI URL |
[7] |
Q. Wu, D. Pan, Text. Res. J. 72 (2002) 405-410.
DOI URL |
[8] |
Y. Zhang, K. Song, J. Meng, M.L. Minus, ACS Appl. Mater. Interfaces 5 (2013) 807-814.
DOI URL |
[9] |
Y. Zhang, N. Tajaddod, K. Song, M.L. Minus, Carbon NY. 91 (2015) 479-493.
DOI URL |
[10] |
Y. Liu, S. Kumar, Polym. Rev. 52 (2012) 234-258.
DOI URL |
[11] |
B.A. Newcomb, Compos. Part A Appl. Sci. Manuf. 91 (2016) 262-282.
DOI URL |
[12] |
K. Song, Y. Zhang, J. Meng, E.C. Green, N. Tajaddod, H. Li, M.L. Minus, Materials 6 (2013) 2543-2577 Basel.
DOI URL |
[13] |
K. Song, R. Polak, D. Chen, M.F. Rubner, R.E. Cohen, K.A. Askar, ACS Appl. Mater. Interfaces 8 (2016) 20396-20406.
DOI URL |
[14] |
K. Song, D. Chen, R. Polak, M.F. Rubner, R.E. Cohen, K.A. Askar, ACS Appl. Mater. Interfaces 8 (2016) 35552-35564.
DOI URL |
[15] |
K. Song, Y. Zhang, M.L. Minus, Macromol. Chem. Phys. 216 (2015) 1313-1320.
DOI URL |
[16] |
H. Chang, M. Lu, J. Luo, J.G. Park, R. Liang, C. Park, S. Kumar, Carbon NY. 147 (2019) 419-426.
DOI URL |
[17] |
J. Cai, M. Naraghi, Acta Mater. 162 (2019) 46-54.
DOI URL |
[18] |
X. Zhang, H. Nguyen, M. Daly, S.B.T. Nguyen, H.D. Espinosa, Nanoscale 11 (2019) 12305-12316.
DOI PMID |
[19] |
D. Papkov, N. Delpouve, L. Delbreilh, S. Araujo, T. Stockdale, S. Mamedov, K. Maleckis, Y. Zou, M.N. Andalib, E. Dargent, V.P. Dravid, M.V. Holt, C. Pellerin, Y.A. Dzenis, ACS Nano 13 (2019) 4893-4927.
DOI URL |
[20] |
K. Song, Y. Zhang, J. Meng, M.L. Minus, J. Appl. Polym. Sci. 127 (2013) 2977-2982.
DOI URL |
[21] |
W. Xu, D. Ravichandran, S. Jambhulkar, R. Franklin, Y. Zhu, K. Song, Adv. Mater. Technol. 5 (2020) 2000440.
DOI URL |
[22] | Z. Gao, J. Zhu, S. Rajabpour, K. Joshi, M. Kowalik, B. Croom, Y. Schwab, L. Zhang, C. Bumgardner, K.R. Brown, D. Burden, J.W. Klett, A.C.T. Van Duin, L.V. Zhigilei, X. Li, Sci. Adv. 6 (2020) 1-11. |
[23] |
Q. Lu, M. Arroyo, R. Huang, J. Phys. D: Appl. Phys. 42 (2009) 102002.
DOI URL |
[24] |
C.Y. Hui, D. Shia, Polym. Eng. Sci. 38 (1998) 774-782.
DOI URL |
[25] |
X. Qian, X. Wang, J. Zhong, J. Zhi, F. Heng, Y. Zhang, S. Song, J. Raman Spectrosc. 50 (2019) 665-673.
DOI |
[26] |
M. Sekar, M. Pandiaraj, S. Bhansali, N. Ponpandian, C. Viswanathan, Sci. Rep. 9 (2019) 403.
DOI PMID |
[27] |
B.K. Deka, A. Hazarika, J. Kim, N. Kim, H.E. Jeong, Y. Bin Park, H.W. Park, Chem. Eng. J. 355 (2019) 551-559.
DOI URL |
[28] |
N. Terasawa, I. Takeuchi, Electrochim. Acta 123 (2014) 340-345.
DOI URL |
[29] |
S. Yang, Z. Zhu, F. Wei, X. Yang, Build. Environ. 125 (2017) 60-66.
DOI URL |
[30] |
S. Jambhulkar, W. Xu, D. Ravichandran, J. Prakash, A. Nadar, M. Kannan, K. Song, Nano Lett. 20 (2020) 3199-3206.
DOI PMID |
[31] |
W. Xu, S. Jambhulkar, R. Verma, R. Franklin, D. Ravichandran, K. Song, Nanoscale Adv. 1 (2019) 2510-2517.
DOI URL |
[32] |
S. Xiao, W. Cao, B. Wang, L. Xu, B. Chen, J. Appl. Polym. Sci. 127 (2013) 3198-3203.
DOI URL |
[33] |
H.E. Kissinger, Anal. Chem. 29 (1957) 1702-1706.
DOI URL |
[34] |
H. Chang, M. Lu, J. Luo, J.G. Park, R. Liang, C. Park, S. Kumar, Carbon NY. 147 (2019) 419-426.
DOI URL |
[35] |
J. Wang, L. Hu, C. Yang, W. Zhao, Y. Lu, RSC Adv. 6 (2016) 73404-73411.
DOI URL |
[36] |
M. Maghe, C. Creighton, L.C. Henderson, M.G. Huson, S. Nunna, S. Atkiss, N. Byrne, B.L. Fox, J. Mater. Chem. A 4 (2016) 16619-16626.
DOI URL |
[37] |
Z. Xu, C. Gao, Mater. Today 18 (2015) 480-492.
DOI URL |
[38] |
H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Sci. Rep. 2 (2012) 613.
DOI URL |
[39] |
S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.B.T. Nguyen, R.S. Ruoff, Nature 442 (2006) 282-286.
DOI URL |
[40] | S.R. Ahmad, R.J. Young, I.A. Kinloch, Int. J. Chem. Eng. Appl. 6 (2015) 1-5. |
[41] | A. Bisht, K. Dasgupta, D. Lahiri, J. Appl. Polym. Sci. 135 (2018) 1-11. |
[42] |
W. Xu, D. Ravichandran, S. Jambhulkar, Y. Zhu, K. Song, Adv. Funct. Mater. 31 (2021) 2009311.
DOI URL |
[43] |
G.C. Han, S. Kumar, Science 319 (2008) 908-909.
DOI URL |
[44] | G. Sun, J.H.L. Pang, J. Zhou, Y. Zhang, Z. Zhan, L. Zheng, Appl. Phys. Lett. 101 (2012) 1905-1915. |
[45] | B.W Weibull, J. Appl. Mech. 9 (1951) 293-297. |
[46] |
Y. Li, N. Mehra, T. Ji, X. Yang, L. Mu, J. Gu, J. Zhu, Nanoscale 10 (2018) 1695-1703.
DOI URL |
[47] |
Z. Li, R.J. Young, I.A. Kinloch, N.R. Wilson, A.J. Marsden, A.P.A. Raju, Carbon NY. 88 (2015) 215-224.
DOI URL |
[48] |
Q. Liang, X. Yao, W. Wang, Y. Liu, C.P. Wong, ACS Nano 5 (2011) 2392-2401.
DOI URL |
[49] |
T. Ebbesen, H. Lezec, H. Hiura, J. Bennett, H. Ghaemi, T. Thio, Nature 382 (1996) 54-56.
DOI URL |
[50] |
X.Y. Fang, X.X. Yu, H.M. Zheng, H.B. Jin, L. Wang, M.S. Cao, Phys. Lett. A 379 (2015) 2245-2251.
DOI URL |
[51] |
B. Marinho, M. Ghislandi, E. Tkalya, C.E. Koning, G. de With, Powder Technol. 221 (2012) 351-358.
DOI URL |
[52] |
S. Jambhulkar, W. Xu, R. Franklin, D. Ravichandran, Y. Zhu, K. Song, J. Mater. Chem. C 8 (2020) 9495-9501.
DOI URL |
[53] |
J.E. Colman Lerner, E.Y. Sanchez, J.E. Sambeth, A.A. Porta, Atmos. Environ. 55 (2012) 4 40-4 47.
DOI URL |
[54] |
S.Y. Cho, H.W. Yoo, J.Y. Kim, W. Bin Jung, M.L. Jin, J.S. Kim, H.J. Jeon, H.T. Jung, Nano Lett. 16 (2016) 4508-4515.
DOI URL |
[55] |
J. Wu, K. Tao, Y.Y. Guo, Z. Li, X.T. Wang, Z.Z. Luo, S.L. Feng, C.L. Du, D. Chen, J.M. Miao, L.K. Norford, Adv. Sci. 4 (2017) 1600319.
DOI URL |
[1] | Zheng Huang, Zhuxian Yang, Mian Zahid Hussain, Quanli Jia, Yanqiu Zhu, Yongde Xia. Bimetallic Fe-Mo sulfide/carbon nanocomposites derived from phosphomolybdic acid encapsulated MOF for efficient hydrogen generation [J]. J. Mater. Sci. Technol., 2021, 84(0): 76-85. |
[2] | Baoru Bian, Li Jin, Qiang Zheng, Fang Wang, Xiaohong Xu, Juan Du. Exchange-coupled nanocomposites with novel microstructure and enhanced remanence by a new approach [J]. J. Mater. Sci. Technol., 2021, 79(0): 118-122. |
[3] | L. Jiang, Z.Q. Chen, H.B. Lu, H.B. Ke, Y. Yuan, Y.M. Dong, X.K. Meng. Corrosion protection of NiNb metallic glass coatings for 316SS by magnetron sputtering [J]. J. Mater. Sci. Technol., 2021, 79(0): 88-98. |
[4] | Tielong Han, Fucheng Wang, Jiajun Li, Chunnian He, Naiqin Zhao. Effect of GNPs on microstructures and mechanical properties of GNPs/Al-Cu composites with different heat treatment status [J]. J. Mater. Sci. Technol., 2021, 92(0): 1-10. |
[5] | Fang Bian, XinGe Wu, ShanShan Li, GaoWu Qin, XiangYing Meng, Yin Wang, HongWei Yang. Role of transport polarization in electrocatalysis: A case study of the Ni-cluster/Graphene interface [J]. J. Mater. Sci. Technol., 2021, 92(0): 120-128. |
[6] | Cheng-Fei Cao, Wen-Jun Liu, Hui Xu, Ke-Xin Yu, Li-Xiu Gong, Bi-Fan Guo, Yu-Tong Li, Xiao-Lan Feng, Ling-Yu Lv, Hong-Tao Pan, Li Zhao, Jia-Yun Li, Jie-Feng Gao, Guo-Dong Zhang, Long-Cheng Tang. Temperature-induced resistance transition behaviors of melamine sponge composites wrapped with different graphene oxide derivatives [J]. J. Mater. Sci. Technol., 2021, 85(0): 194-204. |
[7] | Wenlong Liu, Lin Tao, Wei Feng, Jiaxuan Liao, Lingzhao Zhang. Sandwich-type composite multilayer films of strontium titanate and barium strontium titanate and their controllable dielectric properties [J]. J. Mater. Sci. Technol., 2021, 85(0): 245-254. |
[8] | SeungHyeok Chung, Bin Lee, Soo Yeol Lee, Changwoo Do, Ho Jin Ryu. The effects of Y pre-alloying on the in-situ dispersoids of ODS CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 85(0): 62-75. |
[9] | Xiong Yang, Daquan Liu, Jianbo Li, Ruonan Min, Huijun Kang, Linwei Li, Zongning Chen, Enyu Guo, Tongmin Wang. Top-down method to fabricate TiNi1+xSn half-Heusler alloy with high thermoelectric performance [J]. J. Mater. Sci. Technol., 2021, 87(0): 39-45. |
[10] | Longqing Tang, Guowei Bo, Fulin Jiang, Shiwei Xu, Jie Teng, Dingfa Fu, Hui Zhang. Unravelling the precipitation evolutions of AZ80 magnesium alloy during non-isothermal and isothermal processes [J]. J. Mater. Sci. Technol., 2021, 75(0): 184-195. |
[11] | Jiang Yang, Honggang Dong, Yueqing Xia, Peng Li, Xiaohu Hao, Yaqiang Wang, Wei Wu, Baosen Wang. Carbide precipitates and mechanical properties of medium Mn steel joint with metal inert gas welding [J]. J. Mater. Sci. Technol., 2021, 75(0): 48-58. |
[12] | Ming Gao, Ke Yang, Lili Tan, Zheng Ma. Improvement of mechanical property and corrosion resistance of Mg-Zn-Nd alloy by bi-direction drawing [J]. J. Mater. Sci. Technol., 2021, 81(0): 88-96. |
[13] | Lu-Wei Hao, Ji-Dong Liu, Qing Li, Ren-Kun Qing, Yun-Ya He, Jiazhuang Guo, Ge Li, Liangliang Zhu, Chen Xu, Su Chen. Microfluidic-directed magnetic controlling supraballs with multi-responsive anisotropic photonic crystal structures [J]. J. Mater. Sci. Technol., 2021, 81(0): 203-211. |
[14] | Yanqi Ma, Haowei Huang, Hongda Zhou, Michael Graham, James Smith, Xinxin Sheng, Ying Chen, Li Zhang, Xinya Zhang, Elena Shchukina, Dmitry Shchukin. Superior anti-corrosion and self-healing bi-functional polymer composite coatings with polydopamine modified mesoporous silica/graphene oxide [J]. J. Mater. Sci. Technol., 2021, 95(0): 95-104. |
[15] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||