J. Mater. Sci. Technol. ›› 2021, Vol. 81: 203-211.DOI: 10.1016/j.jmst.2020.11.063
• Research Article • Previous Articles Next Articles
Lu-Wei Haoa, Ji-Dong Liua, Qing Lia, Ren-Kun Qinga, Yun-Ya Hea, Jiazhuang Guoa, Ge Lia, Liangliang Zhua,*(), Chen Xub,*(
), Su Chena,*(
)
Received:
2020-09-09
Revised:
2020-11-08
Accepted:
2020-11-24
Published:
2021-01-08
Online:
2021-01-08
Contact:
Liangliang Zhu,Chen Xu,Su Chen
About author:
chensu@njtech.edu.cn (S. Chen).Lu-Wei Hao, Ji-Dong Liu, Qing Li, Ren-Kun Qing, Yun-Ya He, Jiazhuang Guo, Ge Li, Liangliang Zhu, Chen Xu, Su Chen. Microfluidic-directed magnetic controlling supraballs with multi-responsive anisotropic photonic crystal structures[J]. J. Mater. Sci. Technol., 2021, 81: 203-211.
Fig. 1. (a) Synthesis of stable core/shell monodisperse PS@poly(BA-co-AA) CPC via emulsion polymerization. (b) Schematic illustration of the microfluidic fabrication of multi-responsive CPC supraballs and cluster particles. (c) Schematic of preparing the 2D multi-responsive pattern with structural color and red fluorescence via an automatic printing system.
Fig. 2. (a) SEM image of as-prepared pure PS@poly(BA-co-AA) NPs and polydispersity indices of the latex NPs: 0.019; (b) TEM image of as-prepared pure PS@poly(BA-co-AA) NPs; (c) Optical microphograph and SEM image of pure PS@poly(BA-co-AA) supraballs; (d) SEM top-view image of pure PS@poly(BA-co-AA) supraballs.
Fig. 3. (a) SEM image of the humidity sensitive supraballs after polymerization. (b) FT-IR spectra of PS@poly(BA-co-AA) (black), pure PAM (red) and humidity sensitive supraballs (blue). (c) Diameter and (d) reflection spectra of humidity sensitive supraballs under the different RH. (e) Schematic diagram of the color changing mechanism of humidity sensitive supraballs and (f) photographs of humidity sensitive supraballs under the RH of 25, 60, 75, 90 and 100 % (scale bar =100 μm).
Fig. 4. (a) SEM image of temperature sensitive supraballs after polymerization. (b) FT-IR spectra of PS@poly(BA-co-AA) (black), pure PNIPAM (red) and temperature-sensitive supraballs (blue). (c) Diameter and (d) reflection spectra of temperature sensitive supraballs under the different temperature. (e) Schematic diagram of the color changing mechanism of temperature sensitive supraballs and (f) photographs of temperature sensitive supraballs under the temperature of 22, 32, 36 and 45 °C (scale bar =100 μm).
Fig. 5. (a) TEM image of CdTe/ZnS QDs/PS@poly(BA-co-AA) CPC hybrid supraballs. (b) UV-vis absorption and PL spectra of QDs hybrid supraballs. (c) Fluorescent micrograph of QDs/CPC hybrid supraballs. (d) TGA curves of the supraballs without (curve 1, black) and with CdTe/ZnS QDs (curve 2, red) loading.
Fig. 6. (a) Schematic of multi-responsive supraball via materials and structures. (b-d) Optical images of four humidity sensitive magnetic supraballs before and after RH and temperature changes of each stage. (scale bar: 200 μm). (e) Fluorescent images of linear CPC cluster supraballs under UV light. (f) Optical images of four humidity sensitive supraballs in different configurations of AB 1, AB2, AB3 and AB4 before and after RH change (scale bar: 200 μm). (g) Optical images of rotational motion of a Janus supraball induced by a rotating magnet under an external magnetic field. (h) Movement of Janus supraballs in a capillary tube by an additional magnet at different times. (i) Optical photographs of Janus supraballs faceplate display under the magnetic field, RH changing and UV light irradiation.
Fig. 7. (a) Schematic of the 2D multi-responsive pattern preparation via automatic printing system. Optical images of “smiley face” at the conditions of (b) 22 °C, RH = 25 %, (c) 22 °C, RH = 60 % and (d) 32 °C, RH = 60 %. (e) Fluorescent image under UV light. (f) Optical and fluorescent images of “an arrow through the heart” pattern in visible light and UV light.
[1] |
S.J. Jeon, M.C. Chiappelli, R.C. Hayward, Adv. Funct. Mater. 26 (2016) 722-728.
DOI URL |
[2] |
W.Z. Liu, L. Li, S.N. Liu, B. Liu, Z.Y. Wu, J.R. Deng, J. Mater. Chem. C 7 (2019)8946-8953.
DOI URL |
[3] |
J.J. Qin, B.H. Dong, L.X. Cao, W. Wang, J. Mater. Chem. C 6 (2018) 4234-4242.
DOI URL |
[4] |
P. Snapp, P. Kang, J. Leem, S.W. Nam, Adv. Funct. Mater. 29 (2019), 1902216.
DOI URL |
[5] |
J.Y. Wang, Y.D. Hu, R.H. Deng, R.J. Liang, W.K. Li, S.Q. Liu, J.T. Zhu, Langmuir 29 (2013) 8825-8834.
DOI URL |
[6] |
W.T. Wang, X.Q. Fan, F.H. Li, J.J. Qiu, M.M. Umair, W.C. Ren, B.Z. Ju, S.F. Zheng, B.T. Tang, Adv. Opt. Mater. 6 (2018), 1701093.
DOI URL |
[7] |
Y.L. Zhang, J. Tang, K.K. Feng, H.L. Zhao, W.W. Yan, Z.M. Sun, F.M. Wu, Y. Sun, J.P. Gao, React. Funct. Polym. 148 (2020), 104504.
DOI URL |
[8] |
L. Bai, Z.Y. Xie, W. Wang, C.W. Yuan, Y.J. Zhao, Z.D. Mu, Q.F. Zhong, Z.Z. Gu, ACS Nano 8 (2014) 11094-11100.
DOI URL |
[9] |
K.Z. Liu, Y. Tian, Q. Li, X.Y. Du, J. Zhang, C.F. Wang, S. Chen, J. Mater. Chem. C 6 (2018) 2336-2341.
DOI URL |
[10] |
D.P. Yang, G.L. Liao, S.M. Huang, J. Mater. Chem. C 7 (2019) 11776-11782.
DOI URL |
[11] |
A.C. Arsenault, D.P. Puzzo, I. Manners, G.A. Ozin, Nat. Photonics 1 (2007)468-472.
DOI URL |
[12] |
S.Y. Lee, S.H. Kim, H. Hwang, J.Y. Sim, S.M. Yang, Adv. Mater. 26 (2014)2391-2397.
DOI URL |
[13] |
X.J. Wu, R. Hong, J.K. Meng, R. Cheng, Z.J. Zhu, G. Wu, Q. Li, C.F. Wang, S. Chen, Angew. Chem. Int. Ed. 58 (2019) 2-11.
DOI URL |
[14] |
Q.Q. Fu, H.M. Zhu, J.P. Ge, Adv. Funct. Mater. 28 (2018), 1804628.
DOI URL |
[15] |
G. Peng, Z.J. Zhu, Y. Tian, Y.L. Tong, T.T. Cui, C.F. Wang, S. Chen, J. Mater. Chem. C 6 (2018) 8187-8193.
DOI URL |
[16] |
Y. Tian, M. Chen, J. Zhang, Y.L. Tong, C.F. Wang, G.P. Wiederrecht, S. Chen, Small Methods 2 (2018), 1800104.
DOI URL |
[17] |
M. Chen, L. Zhou, Y. Guan, Y.J. Zhang, Angew. Chem. Int. Ed. 52 (2013)9961-9965.
DOI URL |
[18] |
J. Hou, M.Z. Li, Y.L. Song, Nano Today 22 (2018) 132-144.
DOI URL |
[19] |
J. Hou, M.Z. Li, Y.L. Song, Angew. Chem. Int. Ed. 57 (2018) 2544-2553.
DOI URL |
[20] |
S. Jung, J.L. Kaar, M.P. Stoykovich, Mol. Syst. Des. Eng. 1 (2016) 225-241.
DOI URL |
[21] |
C.F. Lai, J.S. Li, Actuat. B-Chem. 286 (2019) 394-400.
DOI URL |
[22] |
Y.W. Sun, Y.P. Zhang, J.J. Liu, F.Q. Nie, RSC Adv. 6 (2016) 11204-11210.
DOI URL |
[23] |
F.B. Xiao, Y.F. Sun, W.F. Du, W.H. Shi, Y. Wu, S.Z. Liao, Z.Y. Wu, R.Q. Yu, Adv. Funct. Mater. 27 (2017), 1702147.
DOI URL |
[24] |
Y. Tian, J. Zhang, S.S. Liu, S.Y. Yang, S.N. Yin, C.F. Wang, L. Chen, S. Chen, Opt. Mater. 57 (2016) 107-113.
DOI URL |
[25] |
L. Wang, J.Y. Wang, Nanoscale 11 (2019) 16708-16722.
DOI PMID |
[26] |
B. Zhang, Y.L. Cai, L.R. Shang, H. Wang, Y. Cheng, F. Rong, Z.Z. Gu, Y.J. Zhao, Nanoscale 8 (2016) 3841-3847.
DOI PMID |
[27] |
J. Zhang, Y. Tian, L.T. Ling, S.N. Yin, C.F. Wang, S. Chen, J. Nanopart. Res. 16 (2014) 2769.
DOI URL |
[28] |
Z.J. Zhu, J.D. Liu, C. Liu, X.J. Wu, Q. Li, S. Chen, X. Zhao, D.A. Weitz, Small 16 (2019), 1903939.
DOI URL |
[29] |
H.C. Gu, Y.J. Zhao, Y. Cheng, Z.Y. Xie, F. Rong, J.Q. Li, B.P. Wang, D.G. Fu, Z.Z. Gu, Small 9 (2013) 2266-2271.
DOI URL |
[30] | S.H. Kim, S.J. Jeon, W.C. Jeong, H.S. Park, S.M. Yang, Adv. Mater. 20 (2008)4129-4134. |
[31] |
S.S. Liu, C.F. Wang, X.Q. Wang, J. Zhang, Y. Tian, S.N. Yin, S. Chen, J. Mater. Chem. C 2 (2014) 9431-9438.
DOI URL |
[32] |
Z.Y. Yu, C.F. Wang, L.T. Ling, L. Chen, S. Chen, Angew. Chem. Int. Ed. 51 (2012)2375-2378.
DOI URL |
[33] |
C. Huang, Y. Cheng, H.B. Zhang, J. Wei, Part. Part. Syst. Charact. 36 (2019),1900238.
DOI URL |
[34] |
H.H. Wang, S.Y. Yang, S.N. Yin, L. Chen, S. Chen, ACS Appl. Mater. Interfaces. 7 (2015) 8827-8833.
DOI URL |
[35] |
J.M. Tsay, M. Pflughoefft, L.A. Bentolila, S. Weiss, J. Am. Chem. Soc. 126 (2004)1926-1927.
DOI URL |
[36] |
S.N. Yin, C.F. Wang, S.S. Liu, S. Chen, J. Mater. Chem. C 1 (2013) 4685-4690.
DOI URL |
[37] |
E.T. Tian, J.X. Wang, Y.M. Zheng, Y.L. Song, L. Jiang, D.B. Zhu, J. Mater. Chem. 18 (2008) 1116-1122.
DOI URL |
[38] |
J. Gao, P. Luo, X.Y. Yan, L.X. Hou, Iran. Polym. J. 27 (2018) 951-963.
DOI URL |
[39] |
B.T. Kanai, D.Y. Lee, H.C. Shum, R.K. Shah, D.A. Weitz, Adv. Mater. 22 (2010)4998-5002.
DOI URL |
[40] |
T. Kanai, D.Y. Lee, H.C. Shum, D.A. Weitz, Small 6 (2010) 807-810.
DOI URL |
[41] |
B.A. Humphreys, S.W. Prescott, T.J. Murdoch, A. Nelson, E.P. Gilbert, G.B. Webber, E.J. Wanless, Soft Matter 15 (2019) 55-64.
DOI |
[42] |
X.Z. Zhang, R.X. Zhuo, Eur. Polym. J. 36 (2000) 2301-2303.
DOI URL |
[43] |
S.N. Yin, S. Yang, C.F. Wang, S. Chen, J. Am. Chem. Soc. 138 (2016)566-573.
DOI URL |
[1] | Erica Rosella, Nan Jia, Diego Mantovani, Jesse Greener. A microfluidic approach for development of hybrid collagen-chitosan extracellular matrix-like membranes for on-chip cell cultures [J]. J. Mater. Sci. Technol., 2021, 63(0): 54-61. |
[2] | Jiuchuan Guo, Fanyu Zeng, Jinhong Guo, Xing Ma. Preparation and application of microfluidic SERS substrate: Challenges and future perspectives [J]. J. Mater. Sci. Technol., 2020, 37(0): 96-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||