J. Mater. Sci. Technol. ›› 2021, Vol. 81: 212-218.DOI: 10.1016/j.jmst.2020.11.062
• Research Article • Previous Articles Next Articles
Huan Zhanga, Yangxin Lia,*(), Yuxuan Liua, Qingchun Zhua, Xixi Qia, Gaoming Zhua, Jinhui Wangb, Peipeng Jinb, Xiaoqin Zenga,b,**(
)
Received:
2020-09-05
Revised:
2020-11-05
Accepted:
2020-11-25
Published:
2021-01-07
Online:
2021-01-07
Contact:
Yangxin Li,Xiaoqin Zeng
About author:
**National Engineering Research Center of Light AlloyNet Forming and State Key Laboratory of Metal Matrix Composite, Shanghai JiaoTong University, 200240, Shanghai, PR China.E-mail addresses: xqzeng@sjtu.edu.cn (X. Zeng).Huan Zhang, Yangxin Li, Yuxuan Liu, Qingchun Zhu, Xixi Qi, Gaoming Zhu, Jinhui Wang, Peipeng Jin, Xiaoqin Zeng. The effect of basal <a> dislocation on $\left\{ 11\bar{2}1 \right\}$ twin boundary evolution in a Mg-Gd-Y-Zr alloy[J]. J. Mater. Sci. Technol., 2021, 81: 212-218.
Fig. 1. (a) initial microstructure of GW103 K alloy; (b) grain boundary misorientation angle distribution chart, and (c) {0002} and $\{10\bar{1}0\}$ pole figures.
Fig. 2. The crystallographic features of $\{11\bar{2}1\}$ twin in the SHPBed GW103 K alloy: (a) an EBSD map with multiple twinning modes; (b) an enlarged IPF map of white dash rectangle in (a); (c) and (d) $\{10\bar{1}0\}$ and $\{11\bar{2}1\}$ PFs for the $\{11\bar{2}1\}$ twins, respectively. The spot size is 1 μm.
Fig. 3. (a) a TEM BF image of $\{11\bar{2}1\}$ twins with the incident beam parallel to the <$1\bar{1}00$ > axis; (b-d) SAED patterns taken from corresponding areas in (a); (e) schematic illustration of the perfect SAED pattern of $\{11\bar{2}1\}$ twin. The white lines in (a) represent the basal plane traces of matrix and twins.
Fig. 4. (a) an EBSD map showing the morphology of $\{11\bar{2}1\}$ twin boundary; (b) misorientation analysis of the $\{11\bar{2}1\}$ boundaries selected in (a).
Slip systems | Schmid factors | ||
---|---|---|---|
Matrix | $\{11\bar{2}1\}$ Twin | ||
Basal <a> | (0001)$[2\bar{1}\bar{1}0]$ | 0.06 | 0.48 |
(0001) $[\bar{1}2\bar{1}0]$ | 0.03 | 0.20 | |
(0001) $[\bar{1}\bar{1}20]$ | 0.03 | 0.29 | |
Prismatic <a> | $(01\bar{1}0)[2\bar{1}\bar{1}0]$ | 0.06 | 0.06 |
$(10\bar{1}0)[\bar{1}2\bar{1}0]$ | 0.40 | 0.23 | |
$(\bar{1}100)[\bar{1}\bar{1}20]$ | 0.46 | 0.29 | |
Pyramidal <a> | $(01\bar{1}1)[2\bar{1}\bar{1}0]$ | 0.02 | 0.17 |
$(10\bar{1}1)[\bar{1}2\bar{1}0]$ | 0.34 | 0.11 | |
$(\bar{1}101)[\bar{1}\bar{1}20]$ | 0.42 | 0.39 | |
$(0\bar{1}11)[2\bar{1}\bar{1}0]$ | 0.08 | 0.29 | |
$(\bar{1}011)[\bar{1}2\bar{1}0]$ | 0.37 | 0.29 | |
$(1\bar{1}01)[\bar{1}\bar{1}20]$ | 0.39 | 0.12 | |
Pyramidal <c + a> | $(2\bar{1}\bar{1}2)[2\bar{1}\bar{1}3]$ | 0.39 | 0.11 |
$(11\bar{2}\bar{2})[11\bar{2}\bar{3}]$ | 0.19 | 0.27 | |
$(\bar{1}2\bar{1}2)[\bar{1}2\bar{1}3]$ | 0.02 | 0.11 | |
$(\bar{2}112)[\bar{2}11\bar{3}]$ | 0.02 | 0.26 | |
$(\bar{1}\bar{1}22)[\bar{1}\bar{1}2\bar{3}]$ | 0.20 | 0.18 | |
$(1\bar{2}12)[1\bar{2}1\bar{3}]$ | 0.41 | 0.25 |
Table 1 Calculated Schmid factors of possible slip systems within the Grain-1 shown in Fig. 4.
Slip systems | Schmid factors | ||
---|---|---|---|
Matrix | $\{11\bar{2}1\}$ Twin | ||
Basal <a> | (0001)$[2\bar{1}\bar{1}0]$ | 0.06 | 0.48 |
(0001) $[\bar{1}2\bar{1}0]$ | 0.03 | 0.20 | |
(0001) $[\bar{1}\bar{1}20]$ | 0.03 | 0.29 | |
Prismatic <a> | $(01\bar{1}0)[2\bar{1}\bar{1}0]$ | 0.06 | 0.06 |
$(10\bar{1}0)[\bar{1}2\bar{1}0]$ | 0.40 | 0.23 | |
$(\bar{1}100)[\bar{1}\bar{1}20]$ | 0.46 | 0.29 | |
Pyramidal <a> | $(01\bar{1}1)[2\bar{1}\bar{1}0]$ | 0.02 | 0.17 |
$(10\bar{1}1)[\bar{1}2\bar{1}0]$ | 0.34 | 0.11 | |
$(\bar{1}101)[\bar{1}\bar{1}20]$ | 0.42 | 0.39 | |
$(0\bar{1}11)[2\bar{1}\bar{1}0]$ | 0.08 | 0.29 | |
$(\bar{1}011)[\bar{1}2\bar{1}0]$ | 0.37 | 0.29 | |
$(1\bar{1}01)[\bar{1}\bar{1}20]$ | 0.39 | 0.12 | |
Pyramidal <c + a> | $(2\bar{1}\bar{1}2)[2\bar{1}\bar{1}3]$ | 0.39 | 0.11 |
$(11\bar{2}\bar{2})[11\bar{2}\bar{3}]$ | 0.19 | 0.27 | |
$(\bar{1}2\bar{1}2)[\bar{1}2\bar{1}3]$ | 0.02 | 0.11 | |
$(\bar{2}112)[\bar{2}11\bar{3}]$ | 0.02 | 0.26 | |
$(\bar{1}\bar{1}22)[\bar{1}\bar{1}2\bar{3}]$ | 0.20 | 0.18 | |
$(1\bar{2}12)[1\bar{2}1\bar{3}]$ | 0.41 | 0.25 |
Fig. 5. Calculated Schmid factors of possible slip systems in 33 grains including $\{11\bar{2}1\}$ twin, with the distribution shown in (a) the surrounding matrix and (b) $\{11\bar{2}1\}$ twin, respectively. The highest Schmid factor values are selected in each slip system.
Fig. 6. (a) TEM BF images of dislocations within the $\{11\bar{2}1\}$ twin and surrounding matrix, with the incident beam parallel to the $\{1\bar{1}00\}$ axis; (b-d) corresponding SAED patterns taken from regions in (a); basal <a> dislocations identification within the $\{11\bar{2}1\}$ twin and surrounding matrix under different two-beam conditions (e) g = $\{11\bar{2}0\}$ and (f) g = (0002), respectively.
Fig. 8. (a-c) HAADF-STEM images of the $\{11\bar{2}1\}$ twin boundaries: (a) the perfect $\{11\bar{2}1\}$ twin boundary with 34°$<1\bar{1}00>$; (b) deviated misorientation $\{11\bar{2}1\}$ twin boundary with a 36° $<1\bar{1}00>$; (c) $\{11\bar{2}1\}$ twin boundary with an extra atomic plane and a step; (d-f) corresponding schematic illustrations for the $\{11\bar{2}1\}$ twin boundary evolution via interacting with basal<a> dislocations.
[1] |
S.R. Agnew, Ö. Duygulu, Int. J. Plast. 21 (2005) 1161-1193.
DOI URL |
[2] |
J.W. Christian, S. Mahajan, Prog. Mater. Sci. 39 (1995) 1-157.
DOI URL |
[3] |
X. Liao, J. Wang, J. Nie, Y. Jiang, P. Wu, MRS Bull. 41 (2016) 314-319.
DOI URL |
[4] |
F. Liu, R. Xin, C. Wang, B. Song, Q. Liu, Scr. Mater. 158 (2019) 131-135.
DOI URL |
[5] |
H. El Kadiri, C.D. Barrett, J. Wang, C.N. Tomé, Acta Mater. 85 (2015) 354-361.
DOI URL |
[6] |
R. Xin, C. Guo, Z. Xu, G. Liu, X. Huang, Q. Liu, Scr. Mater. 74 (2014) 96-99.
DOI URL |
[7] |
D. Ando, J. Koike, Y. Sutou, Acta Mater. 58 (2010) 4316-4324.
DOI URL |
[8] |
B.S. Wang, R.L. Xin, G.J. Huang, Q. Liu, Scr. Mater. 66 (2012) 239-242.
DOI URL |
[9] |
M. Jahedi, B.A. McWilliams, P. Moy, M. Knezevic, Acta Mater. 131 (2017)221-232.
DOI URL |
[10] |
N. Stanford, R.K.W. Marceau, M.R. Barnett, Acta Mater. 82 (2015) 447-456.
DOI URL |
[11] | I. Ulacia, N.V. Dudamell, F. Gálvez, S. Yi, M.T. Pérez-Prado, I.Hurtado, ActaMater. 58 (2010) 2988-2998. |
[12] |
N.V. Dudamell, I. Ulacia, F. Gálvez, S. Yi, J. Bohlen, D. Letzig, I. Hurtado, M.T. Pérez-Prado, Acta Mater. 59 (2011) 6949-6962.
DOI URL |
[13] |
Y. Xin, L. Lv, H. Chen, C. He, H. Yu, Q. Liu, Mater. Sci. Eng. A 662 (2016)95-99.
DOI URL |
[14] |
P. Chen, F. Wang, B. Li, Acta Mater. 164 (2019) 440-453.
DOI URL |
[15] |
J. Zhang, G. Xi, X. Wan, C. Fang, Acta Mater. 133 (2017) 208-216.
DOI URL |
[16] | Y. Liu, Y. Li, H. Zhang, Q. Zhu, X. Qi, J. Wang, J. Wang, P. Jin, X. Zeng, Mater. Charact. 162 (2020). |
[17] |
J. Xu, B. Guan, H. Yu, X. Cao, Y. Xin, Q. Liu, J. Mater. Sci. Technol. 32 (2016)1239-1244.
DOI URL |
[18] |
H. Li, Q. Zeng, P. Yang, Q. Sun, J. Wang, J. Tu, M. Zhu, J. Mater. Sci. Technol. 43 (2020) 230-237.
DOI URL |
[19] |
N. Stanford, M.R. Barnett, Int. J. Plast. 47 (2013) 165-181.
DOI URL |
[20] |
H. Su, X. Zhou, S. Zheng, D. Wu, R. Chen, H. Ye, Z. Yang, Scr. Mater. 187 (2020)113-118.
DOI URL |
[21] | F. Wang, C.D. Barrett, R.J. McCabe, H.El Kadiri, L. Capolungo, S.R. Agnew, ActaMater. 165 (2019) 471-485. |
[22] |
K. Matsubara, H. Kimizuka, S. Ogata, Comput. Mater. Sci. 122 (2016) 314-321.
DOI URL |
[23] | N.J. Lane, S.I. Simak, A.S. Mikhaylushkin, I.A. Abrikosov, L. Hultman, M.W. Barsoum, Phys. Rev. B 84 (2011). |
[24] | K.X. Sun, Y. Zeng, D.D. Yin, F. Gao, L.J. Long, X.Y. Qian, Y.J. Wan, G.F. Quan, B. Jiang, Mater. Sci. Eng. A 792 (2020). |
[25] | S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, R. Gonzalez-Martinez, ActaMater. 59 (2011) 429-439. |
[26] |
N. Stanford, R. Cottam, B. Davis, J. Robson, Acta Mater. 78 (2014) 1-13.
DOI URL |
[27] |
Z. Huang, L. Wang, B. Zhou, T. Fischer, S. Yi, X. Zeng, Scr. Mater. 143 (2018)44-48.
DOI URL |
[28] |
M. Yamasaki, K. Hagihara, S.-i. Inoue, J.P. Hadorn, Y. Kawamura, Acta Mater. 61 (2013) 2065-2076.
DOI URL |
[29] |
J. Wang, J.P. Hirth, C.N. Tomé, Acta Mater. 57 (2009) 5521-5530.
DOI URL |
[30] |
H.A. Khater, A. Serra, R.C. Pond, Philos. Mag. 93 (2013) 1279-1298.
DOI URL |
[31] |
J. Wang, I.J. Beyerlein, C.N. Tomé, Int. J. Plast. 56 (2014) 156-172.
DOI URL |
[32] |
Y.T. Zhu, X.Y. Zhang, H.T. Ni, F. Xu, J. Tu, C. Lou, Mater. Sci. Eng. A 548 (2012)1-5.
DOI URL |
[33] | E.J. Freise, A. Kelly, A.H. Cottrell, P. Roy, Proc. R. Soc. Lond. A Math. 264 (1961)269-276. |
[1] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
[2] | Yunwei Gui, Yujie Cui, Huakang Bian, Quanan Li, Lingxiao Ouyang, Akihiko Chiba. Role of slip and {10-12} twin on the crystal plasticity in Mg-RE alloy during deformation process at room temperature [J]. J. Mater. Sci. Technol., 2021, 80(0): 279-296. |
[3] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Huahai Mao, Jian Sun, Levente Vitos. Assessing the magnetic order dependent γ-surface of Cr-Co-Ni alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 66-74. |
[4] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
[5] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
[6] | Lulu Li, Irene J. Beyerlein, Weizhong Han. Interface-facilitated stable plasticity in ultra-fine layered FeAl/FeAl2 micro-pillar at high temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 61-65. |
[7] | Xu Lu, Dong Wang. Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test [J]. J. Mater. Sci. Technol., 2021, 67(0): 243-253. |
[8] | Jin-Yu Zhang, Fu-Zhi Dai, Zhi-Peng Sun, Wen-Zheng Zhang. Structures and energetics of semicoherent interfaces of precipitates in hcp/bcc systems: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2021, 67(0): 50-60. |
[9] | Tayyeb Ali, Lin Wang, Xingwang Cheng, Huanwu Cheng, Ying Yang, Anjin Liu, Xuefeng Xu, Zhe Zhou, Zixuan Ning, Ziqi Xu, Xinhua Min. Mechanical (compressive) form of driving force triggers the phase transformation from β to ω & α’’ phases in metastable β phase-field Ti-5553 alloy [J]. J. Mater. Sci. Technol., 2021, 78(0): 238-246. |
[10] | L.Y. Zhao, H. Yan, R.S. Chen, En-Hou Han. Orientations of nuclei during static recrystallization in a cold-rolled Mg-Zn-Gd alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 162-167. |
[11] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
[12] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[13] | Bingqiang Wei, Song Ni, Yong Liu, Min Song. Structural characterization of the {11$\overline 2$2} twin boundary and the corresponding stress accommodation mechanisms in pure titanium [J]. J. Mater. Sci. Technol., 2021, 72(0): 114-121. |
[14] | Xiao Zhang, Pei Wang, Dianzhong Li, Yiyi Li. Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 72(0): 180-188. |
[15] | Weichao Bao, Stuart Robertson, Jia-Wei Zhao, Ji-Xuan Liu, Houzheng Wu, Guo-Jun Zhang, Fangfang Xu. Structural integrity and damage of ZrB2 ceramics after 4 MeV Au ions irradiation [J]. J. Mater. Sci. Technol., 2021, 72(0): 223-230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||