J. Mater. Sci. Technol. ›› 2021, Vol. 73: 116-127.DOI: 10.1016/j.jmst.2020.07.027
• Research Article • Previous Articles Next Articles
Yujie Cuia,*(), Kenta Aoyagia, Huakang Biana,*(
), Yuichiro Hayasakab, Akihiko Chibaa
Received:
2020-06-20
Revised:
2020-07-21
Accepted:
2020-07-22
Published:
2021-05-20
Online:
2020-09-13
Contact:
Yujie Cui,Huakang Bian
About author:
bianhuakang@imr.tohoku.ac.jp (H. Bian).Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys[J]. J. Mater. Sci. Technol., 2021, 73: 116-127.
Pre-strain | Average twin width | Twin number | Twin area fraction |
---|---|---|---|
AZ31-Pre-2% | 3.2 ± 0.2 μm | 54 ± 4 | 5.1 ± 0.8 % |
AZ31-Pre-4% | 4.7 ± 0.2 μm | 118 ± 4 | 32.4 ± 3.1 % |
AZ31-Pre-8% | NA | NA | 78.3 ± 4.1 % |
AZ61-Pre-2% | 2.9 ± 0.4 μm | 55 ± 3 | 4.2 ± 1.1 % |
AZ61-Pre-4% | 4.2 ± 0.3 μm | 125 ± 5 | 31.2 ± 2.3 % |
AZ61-Pre-8% | NA | NA | 73.4 ± 3.3 % |
AZ91-Pre-2% | 2.6 ± 0.3 μm | 57 ± 5 | 3.5 ± 1.2 % |
AZ91-Pre-4% | 3.8 ± 0.4 μm | 130 ± 4 | 30.5 ± 2.6 % |
AZ91-Pre-8% | NA | NA | 69.2 ± 3.8 % |
Table 1 Summary of the effects of pre-compression and the Al concentration on the formation of twins.
Pre-strain | Average twin width | Twin number | Twin area fraction |
---|---|---|---|
AZ31-Pre-2% | 3.2 ± 0.2 μm | 54 ± 4 | 5.1 ± 0.8 % |
AZ31-Pre-4% | 4.7 ± 0.2 μm | 118 ± 4 | 32.4 ± 3.1 % |
AZ31-Pre-8% | NA | NA | 78.3 ± 4.1 % |
AZ61-Pre-2% | 2.9 ± 0.4 μm | 55 ± 3 | 4.2 ± 1.1 % |
AZ61-Pre-4% | 4.2 ± 0.3 μm | 125 ± 5 | 31.2 ± 2.3 % |
AZ61-Pre-8% | NA | NA | 73.4 ± 3.3 % |
AZ91-Pre-2% | 2.6 ± 0.3 μm | 57 ± 5 | 3.5 ± 1.2 % |
AZ91-Pre-4% | 3.8 ± 0.4 μm | 130 ± 4 | 30.5 ± 2.6 % |
AZ91-Pre-8% | NA | NA | 69.2 ± 3.8 % |
Fig. 7. Microstructure evolutions of pre-8% strained alloys during reverse tension. The areas in the white boxes indicate the formation of secondary twins.
Fig. 9. Enlarged IPF maps of area A in Fig. 8 in the pre-8% strained AZ91 alloy after (a) 1% and (c) 8% tension; variations of the misorientation angle along (b) line m-n in (a) and (d) line p-q in (c).
Fig. 11. Length-fraction variations of the secondary twin boundaries in all boundaries of the (a) pre-2%, (b) pre-4%, and (c) pre-8% strained alloys during the reverse tension.
Fig. 12. Image quality maps for the pre-8% strained (a, d) AZ31, (b, e) AZ61, and (c, f) AZ91 alloys before and after 12 % reverse tension. The black lines stand for the 15-180° boundaries, the red lines denote the {10 $\bar{1}$ 2} tensile twin boundaries, the green lines stand for the 2-5° boundaries.
Fig. 13. Length-fraction variations of 2-5° boundaries in the (a) pre-2%, (b) pre-4%, and (c) pre-8% strained alloys after each reverse tension strain.
Pre-strain | Secondary twin boundaries (length percentages) | Low-angle boundaries (length percentages) |
---|---|---|
AZ31-Pre-2% | 1.2 ± 0.3 % | 20.4 ± 2.9 % |
AZ31-Pre-4% | 4.0 ± 0.5 % | 39.6 ± 2.8 % |
AZ31-Pre-8% | 5.0 ± 0.6 % | 43.1 ± 3.0 % |
AZ61-Pre-2% | 1.6 ± 0.4 % | 26.2 ± 1.7 % |
AZ61-Pre-4% | 5.2 ± 0.7 % | 43.4 ± 2.1 % |
AZ61-Pre-8% | 6.2 ± 0.6 % | 49.5 ± 2.4 % |
AZ91-Pre-2% | 2.0 ± 0.3 % | 30.6 ± 2.7 % |
AZ91-Pre-4% | 6.1 ± 0.3 % | 48.3 ± 2.6 % |
AZ91-Pre-8% | 7.5 ± 0.5 % | 59.2 ± 3.4 % |
Table 2 Summary of the length percentages of secondary twin boundaries and low-angle boundaries in pre-strained alloys after reverse tension to 12 %.
Pre-strain | Secondary twin boundaries (length percentages) | Low-angle boundaries (length percentages) |
---|---|---|
AZ31-Pre-2% | 1.2 ± 0.3 % | 20.4 ± 2.9 % |
AZ31-Pre-4% | 4.0 ± 0.5 % | 39.6 ± 2.8 % |
AZ31-Pre-8% | 5.0 ± 0.6 % | 43.1 ± 3.0 % |
AZ61-Pre-2% | 1.6 ± 0.4 % | 26.2 ± 1.7 % |
AZ61-Pre-4% | 5.2 ± 0.7 % | 43.4 ± 2.1 % |
AZ61-Pre-8% | 6.2 ± 0.6 % | 49.5 ± 2.4 % |
AZ91-Pre-2% | 2.0 ± 0.3 % | 30.6 ± 2.7 % |
AZ91-Pre-4% | 6.1 ± 0.3 % | 48.3 ± 2.6 % |
AZ91-Pre-8% | 7.5 ± 0.5 % | 59.2 ± 3.4 % |
Fig. 17. (a) Selected-area diffraction pattern, (b) HAADF, (c) dark field (DF)-STEM, and (d-g) corresponding EDS images of the pre-8% strained AZ31 alloy.
[1] |
S. Kim, S. Won, B. Gi, H. Sik, S. Hyuk, J. Mater. Sci. Technol. 46 (2020) 225-236.
DOI URL |
[2] |
I.J. Beyerlein, R.J. McCabe, C.N. Tom, J. Mech. Phys. Solids 59 (2011) 988-1003.
DOI URL |
[3] |
C. Lou, X. Zhang, G. Duan, J. Tu, Q. Liu, J. Mater. Sci. Technol. 30 (2014) 41-46.
DOI URL |
[4] |
D. Sarker, J. Friedman, D.L. Chen, J. Mater. Sci. Technol. 31 (2015) 264-268.
DOI URL |
[5] |
W.F. Zhu, Q. Luo, J.Y. Zhang, Q. Li, J. Alloys. Compd. 731 (2018) 784-795.
DOI URL |
[6] |
Q. Luo, J. Li, B. Li, B. Liu, H. Shao, Q. Li, J. Magnes. Alloy. 7 (2019) 58-71.
DOI URL |
[7] |
J. Wu, L. Jin, J. Dong, F. Wang, S. Dong, J. Mater. Sci. Technol. 42 (2020) 175-189.
DOI URL |
[8] |
H. Li, Q. Zeng, P. Yang, Q. Sun, J. Wang, J. Tu, M. Zhu, J. Mater. Sci. Technol. 43 (2020) 230-237.
DOI URL |
[9] |
D. Sarker, J. Friedman, D.L. Chen, J. Mater. Sci. Technol. 30 (2014) 884-887.
DOI URL |
[10] |
X. Nie, S. Dong, F. Wang, L. Jin, J. Dong, J. Mater. Sci. Technol. 34 (2018) 2035-2041.
DOI URL |
[11] |
B. Liu, K. Eswar Prasad, N. Yang, F. Liu, Z.W. Shan, Acta Mater. 179 (2019) 414-423.
DOI URL |
[12] |
H. Watanabe, Y. Sasakura, N. Ikeo, T. Mukai, J. Alloys. Compd. 626 (2015) 60-64.
DOI URL |
[13] |
H. Somekawa, H. Watanabe, D.A. Basha, A. Singh, T. Inoue, Scr. Mater. 129 (2017) 35-38.
DOI URL |
[14] |
J. Teng, X. Gong, Y. Li, Y. Nie, Mater. Sci. Eng. A 715 (2018) 137-143.
DOI URL |
[15] |
J.Y. Lee, D. Steglich, M.G. Lee, Int. J. Plast. 105 (2018) 1-23.
DOI URL |
[16] |
H. Li, Q. Zeng, P. Yang, Q. Sun, J. Wang, J. Tu, M. Zhu, J. Mater. Sci. Technol. 43 (2020) 230-237.
DOI URL |
[17] |
W.C. Liu, G.H. Wu, C.Q. Zhai, W.J. Ding, A. Korsunsky, Int. J. Plast. 49 (2013) 16-35.
DOI URL |
[18] |
J. Xu, B. Guan, H. Yu, X. Cao, Y. Xin, Q. Liu, J. Mater. Sci. Technol. 32 (2016) 1239-1244.
DOI URL |
[19] |
M.R. Barnett, H. Wang, T. Guo, Int. J. Plast. 112 (2019) 108-122.
DOI URL |
[20] |
Y.J. Cui, Y.P. Li, Z.C. Wang, X. Ding, Y. Koizumi, H. Bian, L. Lin, A. Chiba, Int. J. Plast. 91 (2017) 134-159.
DOI URL |
[21] |
M. Ghazisaeidi, L.G. Hector, W.A. Curtin, Acta Mater. 80 (2014) 278-287.
DOI URL |
[22] |
N. Stanford, J. Geng, Y.B. Chun, C.H.J. Davies, J.F. Nie, M.R. Barnett, Acta Mater. 60 (2012) 218-228.
DOI URL |
[23] |
J. Wang, M. Ramajayam, E. Charrault, N. Stanford, Acta Mater. 163 (2019) 68-77.
DOI URL |
[24] |
H. Fan, Y. Zhu, J.A. El-Awady, D. Raabe, Int. J. Plast. 106 (2018) 186-202.
DOI URL |
[25] |
N. Tahreen, D.L. Chen, M. Nouri, D.Y. Li, J. Alloys. Compd. 623 (2015) 15-23.
DOI URL |
[26] |
W. Liu, Q. Li, M.C. Li, Corros. Sci. 121 (2017) 72-83.
DOI URL |
[27] | R.E. Reed-Hill, Role of Deformation Twinning in Determining the Mechanical Properties of Metals (Ch 11). Inhomogeneity of Plastic Deformation, AMS, Metals Park, OH, 1973. |
[28] |
J.W. Christian, S. Mahajant, Prog. Mater. Sci. 39 (1995) 1-157.
DOI URL |
[29] |
Y. Pei, A. Godfrey, J. Jiang, Y.B. Zhang, W. Liu, Q. Liu, Mater. Sci. Eng. A 550 (2012) 138-145.
DOI URL |
[30] |
Y.J. Cui, Y.P. Li, Z.C. Wang, L. Qian, Y. Koizumi, A. Chiba, Int. J. Plast. 99 (2017) 1-18.
DOI URL |
[31] |
Y. Xin, L. Lv, H. Chen, C. He, H. Yu, Q. Liu, Mater. Sci. Eng. A 662 (2016) 95-99.
DOI URL |
[32] | J.F. Nie, Y.M. Zhu, J.Z. Liu, X.Y. Fang, Science 24 (2013) 957-960. |
[33] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
[34] |
Y. Guo, Q. Luo, B. Liu, Q. Li, Scr. Mater. 178 (2020) 422-427.
DOI URL |
[35] | Q. Luo, C. Zhai, D. Sun, W. Chen, Q. Li, J. Mater, Sci. Technol. 35 (2019) 2115-2120. |
[36] |
Q. Luo, C. Zhai, Q. Gu, W. Zhu, Q. Li, J. Alloys. Compd. 814 (2020), 152297.
DOI URL |
[37] |
J.A. Yasi, L.G. Hector, D.R. Trinkle, Acta Mater. 58 (2010) 5704-5713.
DOI URL |
[38] | S. Lee, J. Im, Y. Yoo, E. Bitzek, D. Kiener, G. Richter, B. Kim, S.H. Oh, Nat. Commun. 5 (2014) 1-10. |
[39] |
Y. Wei, Mater. Sci. Eng. A 528 (2011) 1558-1566.
DOI URL |
[40] |
A. Ostapovets, P. Molnár, Scr. Mater. 69 (2013) 287-290.
DOI URL |
[41] |
S. Yu, C. Liu, Y. Gao, S. Jiang, Z. Chen, Mater. Lett. 165 (2016) 185-188.
DOI URL |
[42] |
A. Ishii, J. Li, S. Ogata, Int. J. Plast. 82 (2016) 32-43.
DOI URL |
[43] |
J. Xu, B. Guan, H. Yu, X. Cao, Y. Xin, Q. Liu, J. Mater. Sci. Technol. 32 (2016) 1239-1244.
DOI URL |
[44] |
G.P.M. Leyson, L.G. Hector Jr., W.A. Curtin, Acta Mater. 60 (2012) 5197-5203.
DOI URL |
[45] |
B. Clausen, C.N. Tomé, D.W. Brown, S.R. Agnew, Acta Mater. 56 (2008) 2456-2468.
DOI URL |
[46] |
J.D. Robson, N. Stanford, M.R. Barnett, Acta Mater. 59 (2011) 1945-1956.
DOI URL |
[1] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
[2] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
[3] | Seong-Woo Choi, Jae Suk Jeong, Jong Woo Won, Jae Keun Hong, Yoon Suk Choi. Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation [J]. J. Mater. Sci. Technol., 2021, 66(0): 193-201. |
[4] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[5] | Xiaofei Cui, Wei Fu, Daqing Fang, Guangli Bi, Zijun Ren, Shengwu Guo, Suzhi Li, Xiangdong Ding, Jun Sun. Mechanical properties and deformation mechanisms of a novel fine-grained Mg-Gd-Y-Ag-Zr-Ce alloy with high strength-ductility synergy [J]. J. Mater. Sci. Technol., 2021, 66(0): 64-73. |
[6] | Ying Niu, Yue Wang, Long Hou, Lansong Ba, Yanchao Dai, Yves Fautrelle, Zongbin Li, Zhongming Ren, Xi Li. Effect of γ phase on mechanical behavior and detwinning evolution of directionally solidified Ni-Mn-Ga alloys under uniaxial compression [J]. J. Mater. Sci. Technol., 2021, 66(0): 91-96. |
[7] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[8] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
[9] | Yuting Wu, Chong Li, Xingchuan Xia, Hongyan Liang, Qiqi Qi, Yongchang Liu. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'-strengthened superalloys [J]. J. Mater. Sci. Technol., 2021, 67(0): 95-104. |
[10] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[11] | Baoquan Wan, Haiyu Li, Yunhui Xiao, Zhongbin Pan, Qiwei Zhang. Improved breakdown strength and energy density of polyimide composites by interface engineering between BN and BaTiO3 fibers [J]. J. Mater. Sci. Technol., 2021, 74(0): 1-10. |
[12] | Lingling Liu, Yeqiang Bu, Yue Sun, Jianfeng Pan, Jiabin Liu, Jien Ma, Lin Qiu, Youtong Fang. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils [J]. J. Mater. Sci. Technol., 2021, 74(0): 237-245. |
[13] | Di Wu, Libin Liu, Lijun Zeng, Wenguang Zhu, Wanlin Wang, Xiaoyong Zhang, Junfeng Hou, Baoliang Liu, Jiafeng Lei, Kechao Zhou. Designing high-strength titanium alloy using pseudo-spinodal mechanism through diffusion multiple experiment and CALPHAD calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 78-88. |
[14] | Yongliang Qi, Tinghui Cao, Hongxiang Zong, Yake Wu, Lin He, Xiangdong Ding, Feng Jiang, Shenbao Jin, Gang Sha, Jun Sun. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping [J]. J. Mater. Sci. Technol., 2021, 75(0): 154-163. |
[15] | Longqing Tang, Guowei Bo, Fulin Jiang, Shiwei Xu, Jie Teng, Dingfa Fu, Hui Zhang. Unravelling the precipitation evolutions of AZ80 magnesium alloy during non-isothermal and isothermal processes [J]. J. Mater. Sci. Technol., 2021, 75(0): 184-195. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||