J. Mater. Sci. Technol. ›› 2021, Vol. 85: 245-254.DOI: 10.1016/j.jmst.2020.12.030
• Research Article • Previous Articles Next Articles
Wenlong Liua,b, Lin Taoc, Wei Fengc,*(), Jiaxuan Liaob,*(
), Lingzhao Zhangb,*(
)
Received:
2020-08-20
Revised:
2020-12-05
Accepted:
2020-12-09
Published:
2021-09-20
Online:
2021-02-05
Contact:
Wei Feng,Jiaxuan Liao,Lingzhao Zhang
About author:
zlz@uestc.edu.cn (L. Zhang).Wenlong Liu, Lin Tao, Wei Feng, Jiaxuan Liao, Lingzhao Zhang. Sandwich-type composite multilayer films of strontium titanate and barium strontium titanate and their controllable dielectric properties[J]. J. Mater. Sci. Technol., 2021, 85: 245-254.
Fig. 1. Processes of the sandwich-type films and the film capacitors: (a) schematic diagrams of the ST/KBST/ST/…/KBST/ST and ST/MgBST/ST/…/MgBST/ST films and the film capacitors, (b) and (c) three-dimensional schematic diagrams of 3 layer-ST/KBST/ST and ST/MgBST/ST films, respectively, (d) preparation process of the films and the film capacitors including film annealing, preparation of capacitor top electrode Au and etching of the capacitors before testing, and performance testing, (e) and (f) schematic diagrams of 3 layer-ST/KBST/ST and ST/MgBST/ST films preheated at 600 °C.
Fig. 2. XRD patterns of six sandwich-type multilayer films and an internal standard substance of pure Ba0.6Sr0.4TiO3 (BST) powder, where dotted lines 1, 2 and 3 correspond to the diffraction peaks of Pt.
Films | Parameters | ||||||
---|---|---|---|---|---|---|---|
PS | PP (°) | X (°) | AGS (nm) | LP (Å) | IR | ||
2ST + 1KBST | BST | (110) | 31.95 | 0.416 | 19.9 | 3.957 | |
(211) | 56.90 | 0.70 | 12.9 | 3.960 | 2.15 (110) | ||
ST | (110) | 32.38 | 0.350 | 23.6 | 3.906 | 2.06 (211) | |
(211) | 57.70 | 0.70 | 13.0 | 3.910 | |||
3ST + 2KBST | BST | (110) | 31.98 | 0.518 | 16.0 | 3.954 | |
(211) | 56.90 | 0.70 | 12.9 | 3.960 | 1.19 (110) | ||
ST | (110) | 32.42 | 0.524 | 15.8 | 3.901 | 1.44 (211) | |
(211) | 57.65 | 0.70 | 13.0 | 3.913 | |||
4ST + 3KBST | BST | (110) | 32.12 | 0.465 | 17.8 | 3.937 | |
(211) | 57.10 | 0.50 | 18.1 | 3.948 | 1.38 (110) 0.92 | ||
ST | (110) | 32.44 | 0.455 | 18.2 | 3.899 | (211) | |
(211) | 57.80 | 0.44 | 20.6 | 3.904 | |||
5ST + 4KBST | BST | (110) | 32.04 | 0.495 | 16.7 | 3.947 | |
(211) | 56.88 | 0.80 | 11.3 | 3.962 | 0.92 (110) | ||
ST | (110) | 32.35 | 0.465 | 17.8 | 3.910 | 0.75 (211) | |
(211) | 57.56 | 0.80 | 11.3 | 3.919 | |||
6ST + 5KBST | BST | (110) | 31.99 | 0.520 | 15.9 | 3.953 | |
(211) | 57.10 | 0.85 | 10.6 | 3.948 | 0.83 (110) | ||
ST | (110) | 32.35 | 0.455 | 18.2 | 3.910 | 0.92 (211) | |
(211) | 57.67 | 0.85 | 10.7 | 3.912 | |||
4ST+3MgBST | BST | (110) | 32.01 | 0.390 | 21.2 | 3.950 | |
(211) | 57.10 | 0.60 | 18.1 | 3.948 | 0.68 (110) | ||
ST | (110) | 32.39 | 0.380 | 21.8 | 3.905 | 0.96 (211) | |
(211) | 57.83 | 0.50 | 18.2 | 3.902 |
Table 1 Phase structure (PS), intensity ratio of BST phase/ST phase (IR), peak position (PP), full-width at half maximum (X), lattice parameter (LP) and average grain size (AGS) calculated by (110) and (211) peaks shown in Fig. 3. The AGS is calculated by the Scherrer formula of D = 0.9λ/(Xcosθ), where D is grain size and λ is 0.15405 nm.
Films | Parameters | ||||||
---|---|---|---|---|---|---|---|
PS | PP (°) | X (°) | AGS (nm) | LP (Å) | IR | ||
2ST + 1KBST | BST | (110) | 31.95 | 0.416 | 19.9 | 3.957 | |
(211) | 56.90 | 0.70 | 12.9 | 3.960 | 2.15 (110) | ||
ST | (110) | 32.38 | 0.350 | 23.6 | 3.906 | 2.06 (211) | |
(211) | 57.70 | 0.70 | 13.0 | 3.910 | |||
3ST + 2KBST | BST | (110) | 31.98 | 0.518 | 16.0 | 3.954 | |
(211) | 56.90 | 0.70 | 12.9 | 3.960 | 1.19 (110) | ||
ST | (110) | 32.42 | 0.524 | 15.8 | 3.901 | 1.44 (211) | |
(211) | 57.65 | 0.70 | 13.0 | 3.913 | |||
4ST + 3KBST | BST | (110) | 32.12 | 0.465 | 17.8 | 3.937 | |
(211) | 57.10 | 0.50 | 18.1 | 3.948 | 1.38 (110) 0.92 | ||
ST | (110) | 32.44 | 0.455 | 18.2 | 3.899 | (211) | |
(211) | 57.80 | 0.44 | 20.6 | 3.904 | |||
5ST + 4KBST | BST | (110) | 32.04 | 0.495 | 16.7 | 3.947 | |
(211) | 56.88 | 0.80 | 11.3 | 3.962 | 0.92 (110) | ||
ST | (110) | 32.35 | 0.465 | 17.8 | 3.910 | 0.75 (211) | |
(211) | 57.56 | 0.80 | 11.3 | 3.919 | |||
6ST + 5KBST | BST | (110) | 31.99 | 0.520 | 15.9 | 3.953 | |
(211) | 57.10 | 0.85 | 10.6 | 3.948 | 0.83 (110) | ||
ST | (110) | 32.35 | 0.455 | 18.2 | 3.910 | 0.92 (211) | |
(211) | 57.67 | 0.85 | 10.7 | 3.912 | |||
4ST+3MgBST | BST | (110) | 32.01 | 0.390 | 21.2 | 3.950 | |
(211) | 57.10 | 0.60 | 18.1 | 3.948 | 0.68 (110) | ||
ST | (110) | 32.39 | 0.380 | 21.8 | 3.905 | 0.96 (211) | |
(211) | 57.83 | 0.50 | 18.2 | 3.902 |
Fig. 5. (a)-(e) the AFM surface morphologies of the 2ST + 1KBST-6ST + 5KBST films, (f) the AFM surface morphology of the 4ST+3MgBST film, (g) the cross-section SEM morphology of 4ST + 3KBST film, (h) the cross-section SEM morphology of 4ST+3MgBST film, (i) EDS mapping images of Ba, Sr, Ti and O in the selected rectangle in Fig. 4(g), and (j) EDS mapping images of Ba, Sr, Ti and O in the selected rectangle in Fig. 4(h).
XPS pattern | Sr3d (%) | Ti2p (%) | O1s (%) | C1s (%) | Sr/Ti |
---|---|---|---|---|---|
2ST + 1KBST | 10.16 | 10.82 | 37.42 | 41.60 | 0.939 |
4ST + 3KBST | 12.24 | 12.77 | 35.53 | 39.46 | 0.958 |
6ST + 5KBST | 14.75 | 15.06 | 33.66 | 36.53 | 0.979 |
4ST+3MgBST | 14.03 | 14.36 | 34.96 | 36.65 | 0.977 |
Table 2 The atomic concentration on the surfaces of four films tested by XPS spectra.
XPS pattern | Sr3d (%) | Ti2p (%) | O1s (%) | C1s (%) | Sr/Ti |
---|---|---|---|---|---|
2ST + 1KBST | 10.16 | 10.82 | 37.42 | 41.60 | 0.939 |
4ST + 3KBST | 12.24 | 12.77 | 35.53 | 39.46 | 0.958 |
6ST + 5KBST | 14.75 | 15.06 | 33.66 | 36.53 | 0.979 |
4ST+3MgBST | 14.03 | 14.36 | 34.96 | 36.65 | 0.977 |
Peaks | Films | Parameters | ||||
---|---|---|---|---|---|---|
PP1 | PP2 | PP3 | PP4 | I2/(I1+I2) | ||
Sr3d | 2ST + 1KBST | 133.15 | 134.80 | 134.15 | 135.80 | 18% |
4ST + 3KBST | 132.95 | 134.6 | 133.95 | 135.60 | 14% | |
6ST + 5KBST | 132.80 | 134.45 | 133.80 | 135.45 | 9.0% | |
4ST+3MgBST | 133.15 | 134.80 | 134.15 | 135.80 | 12% | |
Ti2p | 2ST + 1KBST | 458.65 | 464.45 | 457.65 | 463.45 | 17% |
4ST + 3KBST | 458.50 | 464.30 | 457.50 | 463.30 | 12% | |
6ST + 5KBST | 458.40 | 464.20 | 457.40 | 463.20 | 8% | |
4ST+3MgBST | 458.80 | 464.60 | 457.80 | 463.60 | 10% | |
O1s | 2ST + 1KBST | 529.70 | 531.25 | 532.95 | 43 % | |
4ST + 3KBST | 529.65 | 531.20 | 532.90 | 36% | ||
6ST + 5KBST | 529.70 | 531.25 | 532.95 | 28 % | ||
4ST+3MgBST | 529.70 | 531.25 | 532.95 | 32% | ||
C1s | 2ST + 1KBST | 284.70 | ||||
4ST + 3KBST | 284.65 | |||||
6ST + 5KBST | 284.50 | |||||
4ST+3MgBST | 284.50 |
Table 3 Fitted peak positions (PP) of Sr3d, Ti2p, O1s and C1s peaks of 2ST + 1KBST, 4ST + 3KBST, 6ST + 5KBST and 4ST+3MgBST four films. Except C1s peak, Sr3d, Ti2p or O1s peak can be divided into three or four peaks, where the first two fitted peaks for Sr3d or Ti2p peak and the first fitted peak for O1s peak correspond to perovskite structures, and the other fitted peaks together with C1s peak correspond to non-perovskite structures. I1 shows the total intensity of perovskite structure, I2 reveals the total intensity of non-perovskite structure, and I2/(I1+I2) exhibits the ratio of non-perovskite structure.
Peaks | Films | Parameters | ||||
---|---|---|---|---|---|---|
PP1 | PP2 | PP3 | PP4 | I2/(I1+I2) | ||
Sr3d | 2ST + 1KBST | 133.15 | 134.80 | 134.15 | 135.80 | 18% |
4ST + 3KBST | 132.95 | 134.6 | 133.95 | 135.60 | 14% | |
6ST + 5KBST | 132.80 | 134.45 | 133.80 | 135.45 | 9.0% | |
4ST+3MgBST | 133.15 | 134.80 | 134.15 | 135.80 | 12% | |
Ti2p | 2ST + 1KBST | 458.65 | 464.45 | 457.65 | 463.45 | 17% |
4ST + 3KBST | 458.50 | 464.30 | 457.50 | 463.30 | 12% | |
6ST + 5KBST | 458.40 | 464.20 | 457.40 | 463.20 | 8% | |
4ST+3MgBST | 458.80 | 464.60 | 457.80 | 463.60 | 10% | |
O1s | 2ST + 1KBST | 529.70 | 531.25 | 532.95 | 43 % | |
4ST + 3KBST | 529.65 | 531.20 | 532.90 | 36% | ||
6ST + 5KBST | 529.70 | 531.25 | 532.95 | 28 % | ||
4ST+3MgBST | 529.70 | 531.25 | 532.95 | 32% | ||
C1s | 2ST + 1KBST | 284.70 | ||||
4ST + 3KBST | 284.65 | |||||
6ST + 5KBST | 284.50 | |||||
4ST+3MgBST | 284.50 |
[1] |
M.W. Cole, P.C. Joshi, M.H. Ervin, J. Appl. Phys. 89 (2001) 6336-6340.
DOI URL |
[2] |
H.Z. Wang, Y.X. Dong, Z.M. Wang, J. Alloys. Compd. 745 (2018) 651-658.
DOI URL |
[3] |
D. Popovici, M. Noda, M. Okuyama, Y. Sasaki, M. Komaru, J. Eur. Ceram. Soc. 26 (2006) 1879-1882.
DOI URL |
[4] |
P. Bao, T.J. Jackson, X. Wang, M.J. Lancaster, J. Phys. D Appl. Phys. 41 (2008),063001.
DOI URL |
[5] |
J.H. Leach, H. Liu, V. Avrutin, B. Xiao, Ü. Özgür, H. Morkoc¸, J. Das, Y.Y. Song, C.E. Patton, J. Appl. Phys. 107 (2010), 084511.
DOI URL |
[6] |
J.X. Liao, X.B. Wei, Z.Q. Xu, X.B. Wei, P. Wang, Mater. Chem. Phys. 135 (2012) 1030-1035.
DOI URL |
[7] |
Z. Song, H.X. Liu, S.J. Zhang, Z.J. Wang, Y.T. Shi, H. Hao, M.H. Cao, Z.H. Yao, Z.Y. Yu, J. Eur. Ceram. Soc. 34 (2014) 1209-1217.
DOI URL |
[8] |
J. Xie, H. Hao, Z.H. Yao, L. Zhang, Q. Xu, H.X. Liu, M.H. Cao, Ceram. Int. 44 (2018) 5867-5873.
DOI URL |
[9] |
Y.Z. Fan, Z.Y. Zhou, Y. Chen, W. Huang, X.L. Dong, J. Mater. Chem. C 8 (2020) 50-57.
DOI URL |
[10] |
D.S. Yoon, J.S. Roh, S.M. Lee, H.K. Baik, Prog. Mater. Sci. 48 (2003) 275-371.
DOI URL |
[11] | Y. Jeong, H.J. Jin, J.H. Park, Y. Cho, M. Kim, S. Hong, W. Jo, Y. Yi, S. Im, Adv. Funct. Mater. 30 (2020), 908210. |
[12] |
K. Hashimoto, H. Xu, T. Mukaigawa, R. Kubo, H. Zhu, M. Noda, M. Okuyama, Sens. Actuators A 88 (2001) 10-19.
DOI URL |
[13] |
M.W. Cole, P.C. Joshi, M.H. Ervin, M.C. Wood, R.L. Pfeffer, Thin Solid Films 374 (2000) 34-41.
DOI URL |
[14] |
L. Xiao, K.L. Choy, I. Harrison, Surf. Coatings Technol. 205 (2011) 2989-2993.
DOI URL |
[15] |
M.W. Cole, C.V. Weiss, E. Ngo, S. Hirsch, L.A. Coryell, S.P. Alpay, Appl. Phys. Lett. 92 (2008) 182906.
DOI URL |
[16] |
K.H. Ahn, S. Baik, S.S. Kim, J. Appl. Phys. 92 (2002) 2651-2654.
DOI URL |
[17] |
R.V. Wang, P.C. McIntyre, J.D. Baniecki, K. Nomura, T. Shioga, K. Kurihara, M. Ishii, Appl. Phys. Lett. 87 (2005) 192906.
DOI URL |
[18] |
J.X. Liao, Z.Q. Xu, X.B. Wei, X.B. Wei, P. Wang, B.C. Yang, Surf. Coatings Technol. 206 (2012) 4518-4524.
DOI URL |
[19] |
W.C. Yi, T.S. Kalkur, E. Philofsky, L. Kammerdiner, Thin Solid Films 402 (2002) 307-310.
DOI URL |
[20] |
S. Basu, A. Verma, D.C. Agrawal, Y.N. Mohapatra, R.S. Katiyar, J. Electroceram. 19 (2007) 229-236.
DOI URL |
[21] | L.R. Song, Y.C. Chen, G.S. Wang, L.H. Yang, T. Li, F. Gao, X.L. Dong, Ceram. Int. l40 (2014) 12573-12577. |
[22] |
X.H. Sun, B.L. Zhu, T. Liu, M.Y. Li, X.Z. Zhao, D.Y. Wang, C.L. Sun, H.L.W. Chan, J. Appl. Phys. 99 (2006) 084103.
DOI URL |
[23] |
J.Q. Huang, J.X. Liao, W.F. Zhang, S.Z. Wang, H.Y. Yang, M.Q. Wu, Integ. Ferroelectr. 162 (2015) 94-101.
DOI URL |
[24] |
S.Z. Wang, J.X. Liao, Y.M. Hu, F. Gong, Z.Q. Xu, M.Q. Wu, Mater. Chem. Phys. 193 (2017) 50-56.
DOI URL |
[25] |
W.L. Liu, J.X. Liao, S.Z. Wang, X.F. Huang, Y.F. Zhang, Ceram. Int. 44 (2018) 15653-15659.
DOI URL |
[26] |
S.Z. Wang, J.X. Liao, T.T. Feng, Y.M. Hu, H.Y. Yang, M.Q. Wu, Integ. Ferroelectr. 170 (2016) 120-129.
DOI URL |
[27] |
J.X. Liao, X.B. Wei, Z.Q. Xu, P. Wang, Vacuum 107 (2014) 291-296.
DOI URL |
[28] |
J.Q. Huang, J.X. Liao, P. Wang, W.F. Zhang, X.B. Wei, Z.Q. Xu, Surf. Coatings Technol. 251 (2014) 307-312.
DOI URL |
[29] |
J. Im, O. Auciello, P.K. Baumann, S.K. Streiffer, D.Y. Kaufman, A.R. Krauss, Appl. Phys. Lett. 76 (2000) 1-3.
DOI URL |
[30] |
M. Jain, S.B. Majumder, R.S. Katiyar, D.C. Agrawal, A.S. Bhalla, Appl. Phys. Lett. 81 (2002) 1-3.
DOI URL |
[31] |
W. Ren, S.S.T. McKinstry, C.A. Randall, T.R. Shrout, J. Appl. Phys. 89 (2001) 767-774.
DOI URL |
[32] |
W.Y. Fu, L.Z. Cao, S.F. Wang, Z.H. Sun, B.L. Cheng, Q. Wang, H. Wang, Appl. Phys. Lett. 89 (2006) 132908.
DOI URL |
[33] |
Z. Wang, W. Ren, X.L. Zhan, P. Shi, X.Q. Wu, J. Appl. Phys. 116 (2014) 194107.
DOI URL |
[34] |
L.H. Yang, G.S. Wang, X.L. Dong, F. Ponchel, D. Rémiens, J. Am. Ceram. Soc. 94 (2011) 2262-2265.
DOI URL |
[35] |
W.L. Liu, Y.F. Zhang, J.X. Liao, Z.Q. Xu, Integr. Ferroelectr. 191 (2018) 46-59.
DOI URL |
[36] |
W.L. Liu, Y.Y. Liu, J.S. Do, IEEE Sens. J. 16 (2016) 1872-1879.
DOI URL |
[37] |
Y. Gong, W.Y. Zhou, Z.J. Wang, L. Xu, Y.J. Kou, H.W. Cai, X.R. Liu, Q.G. Chen, Z.M. Dang, J. Mater. Sci. Technol. 34 (2018) 2415-2423.
DOI |
[38] |
D.P. Cao, J.B. Zhang, A.C. Wang, X.H. Yu, B.X. Mi, J. Mater. Sci. Technol. 56 (2020) 189-195.
DOI URL |
[39] |
Q.Q. Liu, J.X. Huang, H. Tang, X.H. Yu, J. Shen, J. Mater. Sci. Technol. 56 (2020) 196-205.
DOI URL |
[40] |
J.Y. Baek, L.T. Duy, S.Y. Lee, H. Seo, J. Mater. Sci. Technol. 42 (2020) 28-37.
DOI URL |
[41] |
D.Q. Liu, Y.X. Wang, X. Jiang, H.J. Kang, X. Yang, X.Y. Zhang, T.M. Wang, J. Mater. Sci. Technol. 52 (2020) 172-179.
DOI URL |
[42] |
X.S. Fang, C.H. Ye, L.D. Zhang, T. Xie, Adv. Mater. 17 (2005) 1661-1665.
DOI URL |
[43] |
J.X. Liao, C.R. Yang, J.H. Zhang, C.L. Fu, H.W. Chen, W.J. Leng, Appl. Surf. Sci. 252 (2006) 7407-7414.
DOI URL |
[44] |
J.X. Liao, C.R. Yang, Z. Tian, H.G. Yang, L. Jin, J. Phys. D Appl. Phys. 39 (2006) 2473-2479.
DOI URL |
[1] | Bailiang Wang, Jiahong Zeng, Yishun Guo, Lin Liang, Yingying Jin, Siyuan Qian, Renjie Miao, Liang Hu, Fan Lu. Reversible grafting of antibiotics onto contact lens mediated by labile chemical bonds for smart prevention and treatment of corneal bacterial infections [J]. J. Mater. Sci. Technol., 2021, 61(0): 169-175. |
[2] | Cholho Jang, Qingjun Jiang, Jianguo Lu, Zhizhen Ye. Structural, Optical and Electrical Properties of Ga Doped ZnO/Cu grid/Ga Doped ZnO Transparent Electrodes [J]. J. Mater. Sci. Technol., 2015, 31(11): 1108-1110. |
[3] | Guojun Zhang, Bin Li, Bailing Jiang, Dichun Chen, Fuxue Yan. Microstructure and Mechanical Properties of Multilayer Ti(C, N) Films by Closed-field Unbalanced Magnetron Sputtering Ion Plating [J]. J Mater Sci Technol, 2010, 26(2): 119-124. |
[4] | Yuding HE, Shejun HU, Jian LI, Guangrong XIE. Effect of Co Ion Implantation on GMR of [NiFeCo(10 nm)/Ag(10 nm)]×20 Multilayer Film [J]. J Mater Sci Technol, 2005, 21(04): 593-598. |
[5] | Yuding HE, Shejun HU, Jian LI, Guangrong XIE. Effect of Annealing Temperature on GMR of [NiFeCo(10 nm)/Ag(10 nm)]×20 Multilayer [J]. J Mater Sci Technol, 2004, 20(02): 179-181. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||