J. Mater. Sci. Technol. ›› 2021, Vol. 85: 235-244.DOI: 10.1016/j.jmst.2021.01.012
• Research Article • Previous Articles Next Articles
Jing Zhanga,*(), Sunxiang Qiana, Lingdong Chena, Liqun Chena, Liping Zhaob,*(
), Jie Fenga,*(
)
Received:
2020-09-24
Revised:
2020-11-26
Accepted:
2020-11-30
Published:
2021-09-20
Online:
2021-01-09
Contact:
Jing Zhang,Liping Zhao,Jie Feng
About author:
fengjie@zjut.edu.cn (J. Feng).Jing Zhang, Sunxiang Qian, Lingdong Chen, Liqun Chen, Liping Zhao, Jie Feng. Highly antifouling double network hydrogel based on poly(sulfobetaine methacrylate) and sodium alginate with great toughness[J]. J. Mater. Sci. Technol., 2021, 85: 235-244.
Scheme 1. (A) Preparation of the PSBMA/SA-Ca2+ DN hydrogel using a “one-pot” method. (B) Representation of the antifouling properties of the DN hydrogel, which resist the biological pollutants including algae (green), cells (red) and non-specific proteins (yellow). (C) The synthesis routes and formation of the SA network and the PSBMA network in the DN hydrogel.
Fig. 1. (A) Tensile curves, (B) elastic modulus, (C) fracture stress and elongation of the DN hydrogel (SBMA: 2.0 M, MBAA: 0.20 mol%) with different concentrations of SA. (D) Tensile curves, (E) elastic modulus, (F) fracture stress and elongation of the DN hydrogel with different concentrations of SBMA (SA: 0.06 g/mL, MBAA: 0.20 mol%). (G) Tensile curves, (H) elastic modulus, (I) fracture stress and elongation of the DN hydrogel (SBMA: 2.0 M, SA: 0.06 g/mL) with different concentrations of MBAA.
Fig. 2. (A) Tensile curves of the prepared hydrogel. (B) Outstanding performance of the PSBMA/SA-Ca2+ DN hydrogel (stretch, twisted stretching, knotting stretching, load bearing, compressing).
Fig. 3. (A) Digital images of the PSBMA/SA-Ca2+ DN hydrogel before and after 24 h of swelling. (B) Swelling kinetic curve of the DN hydrogel. (C) Tensile curves of the DN hydrogel before and after 24 h of swelling. (D) Retention coefficient of tensile strength, elastic modulus, fracture strain, and toughness of the swollen DN hydrogel compared with as-prepared hydrogel.
Fig. 4. (A) Loading-unloading curves of the PSBMA/SA-Ca2+ DN hydrogel under different strains (50 %-250 %). (B) The dissipated energy and dissipation coefficient of the PSBMA/SA-Ca2+ DN hydrogel during the loading-unloading tests.
Fig. 5. (A) Self-recovery behavior of the stretched PSBMA/SA-Ca2+ DN hydrogel at different time. (B) Time-dependent recovery of dissipated energy and elastic modulus of the PSBMA/SA-Ca2+ DN hydrogel.
Fig. 6. Ten successive loading-unloading cycles of: (A) as-prepared and (B) recovered (resting for 24 h at RT). (C) The corresponding dissipated energy in every cycle of the corresponding hydrogel.
Fig. 7. (A) The load-time curve and (B) stress-strain curves of fifty successive compression-relaxation cycles of PSBMA/SA-Ca2+ DN hydrogel. (C) The maximal stress and dissipated energy of the corresponding hydrogel every three cycles in 50 continuous compression-relaxation cycles.
Fig. 8. The relative HRP-conjugated IgG adsorption on the different hydrogels and TCPS. (red columns: the hydrogels were soaked in fresh PBS for 0.5 h before the addition of OPD; blue columns: the hydrogels were soaked in fresh PBS for 3 h before the addition of OPD).
Fig. 9. The fluorescence microscopic images of L929 cells attached on the PSBMA hydrogel (A), PSBMA/SA-Ca2+ DN hydrogel (B) and TCPS (C) at different time (1 d, 4 d and 7 d).
Fig. 10. The microscopic images of chlorella vulgaris and microcystis aeruginosa attached on the PSBMA/SA-Ca2+ DN hydrogel at different culture conditions.
Fig. 11. (A) Viability of L929 cells after incubated with the extraction of the PSBMA/SA-Ca2+ DN hydrogel at different concentrations for 1 d, 4 d, 7 d. (B)Viability of L929 cells after incubated with the extraction of the PSBMA/SA-Ca2+ DN hydrogel for 7 d.
Fig. 12. Micrographs of the subcutaneous implant with PSBMA/SA-Ca2+ DN hydrogel stained with H&E at 7 d and 28 d (n = 3). The red dotted rectangles indicate the boundary between the hydrogel and the tissue and magnify them.
[1] |
N.T. Raveendran, C. Vaquette, C. Meinert, D.S. Ipe, S. Ivanovski, Dent. Mater. 35 (2019) 1683-1694.
DOI URL |
[2] |
Z. Cao, Y. Wang, H. Wang, C. Ma, H. Li, J. Zheng, J. Wu, G. Huang, Polym. Chem. 10 (2019) 3503-3513.
DOI URL |
[3] |
Z. Deng, T. Hu, Q. Lei, J. He, P.X. Ma, B. Guo, ACS Appl. Mater. Interfaces 11 (2019) 6796-6808.
DOI URL |
[4] |
T. Matsuda, R. Kawakami, R. Namba, T. Nakajima, J.P. Gong, Science 363 (2019) 504-508.
DOI URL |
[5] |
L. Trachsel, C. Johnbosco, T. Lang, E.M. Benetti, M.Z. Wong, Biomacromolecules 20 (2019) 4502-4511.
DOI PMID |
[6] |
R. Narayanaswamy, V.P. Torchilin, Molecules 24 (2019) 603.
DOI URL |
[7] |
B. Guo, J. Qu, X. Zhao, M. Zhang, Acta Biomater. 84 (2019) 180-193.
DOI URL |
[8] |
D. Chimene, R. Kaunas, A.K. Gaharwar, Adv. Mater. 32 (2020), 1902026.
DOI URL |
[9] |
N. Noor, A. Shapira, R. Edri, I. Gal, L. Wertheim, T. Dvir, Adv. Sci. 6 (2019), 1900344.
DOI URL |
[10] |
X. Jing, H.Y. Mi, Y.J. Lin, E. Enriquez, X.F. Peng, L.S. Turng, ACS Appl. Mater. Interfaces 10 (2018) 20897-20909.
DOI URL |
[11] |
Y. Liang, X. Zhao, T. Hu, B. Chen, Z. Yin, P.X. Ma, B. Guo, Small 15 (2019), 1900046.
DOI URL |
[12] |
D.M. Yebra, S. Kiil, K.D. Johansen, Prog. Org. Coat. 50 (2004) 75-104.
DOI URL |
[13] |
X. Lin, P. Jain, K. Wu, D. Hong, H.C. Hung, M.B. O’Kelly, B. Li, P. Zhang, Z. Yuan, S. Jiang, Langmuir 35 (2019) 1544-1551.
DOI URL |
[14] |
S. Liu, W. Guo, Adv. Funct. Mater. 28 (2018), 1800596.
DOI URL |
[15] |
C. Zhang, G.A. Parada, X. Zhao, Z. Chen, Langmuir 35 (2019) 13292-13300.
DOI URL |
[16] | P.S. Ba, N. Razza, L. Breloy, S.A. Andaloussi, A. Chiappone, M. Sangermano, C. Hélary, S. Belbekhouche, T. Coradin, D.L. Versace, J. Mater, Chem. B 7 (2019) 6526-6538. |
[17] |
A. Sinclair, M.B. O’Kelly, T. Bai, H.C. Hung, P. Jain, S. Jiang, Adv. Mater. 30 (2018), 1803087.
DOI URL |
[18] |
T. Bai, J. Li, A. Sinclair, S. Imren, F. Merriam, F. Sun, M.B. O’Kelly, C. Nourigat, P. Jain, J.J. Delrow, R.S. Basom, H.C. Hung, P. Zhang, B. Li, S. Heimfeld, S. Jiang, C. Delaney, Nat. Med. 25 (2019) 1566-1575.
DOI URL |
[19] |
J.P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv. Mater. 15 (2003) 1155-1158.
DOI URL |
[20] |
J.P. Gong, Soft Matter 6 (2010) 2583-2590.
DOI URL |
[21] |
T. Tominaga, V.R. Tirumala, E.K. Lin, J.P. Gong, H. Furukawa, Y. Osada, W. Wu, Polymer 48 (2007) 7449-7454.
DOI URL |
[22] |
P. Ge, Q. Cai, H. Zhang, X. Yao, W. Zhu, ACS Appl. Mater. Interfaces 12 (2020) 37549-37560.
DOI URL |
[23] | J. Zhang, L. Chen, B. Shen, Y. Wang, P. Peng, F. Tang, J. Feng, Mater. Sci. Eng. C117 (2020), 111298. |
[24] |
J. Zhang, B. Shen, L. Chen, L. Chen, J. Mo, J. Feng, ACS Appl. Mater. Interfaces 11 (2019) 31594-31604.
DOI URL |
[25] |
Y. Chao, L. Xu, C. Liang, L. Feng, J. Xu, Z. Dong, L. Tian, X. Yi, K. Yang, Z. Liu, Nat. Biomed. Eng. 2 (2018) 611-621.
DOI PMID |
[26] |
Z. Wei, J.H. Yang, Z.Q. Liu, F. Xu, J.X. Zhou, M. Zrínyi, Y. Osada, Y.M. Chen, Adv. Funct. Mater. 25 (2015) 1352-1359.
DOI URL |
[27] |
J. Wu, Z. Wu, S. Han, B.R. Yang, X. Gui, K. Tao, C. Liu, J. Miao, L.K. Norford, ACS Appl. Mater. Interfaces 11 (2019) 2364-2373.
DOI URL |
[28] |
X. Qi, T. Su, M. Zhang, X. Tong, W. Pan, Q. Zeng, Z. Zhou, L. Shen, X. He, J. Shen, ACS Appl. Mater. Interfaces 12 (2020) 13256-13264.
DOI URL |
[29] |
B. Aderibigbe, B. Buyana, Pharmaceutics 10 (2018) 42.
DOI URL |
[30] |
S. Thakur, B. Sharma, A. Verma, J. Chaudhary, S. Tamulevicius, V.K. Thakur, J. Cleaner Prod. 198 (2018) 143-159.
DOI URL |
[31] |
A. Nakayama, A. Kakugo, J.P. Gong, Y. Osada, M. Takai, T. Erata, S. Kawano, Adv. Funct. Mater. 14 (2004) 1124-1128.
DOI URL |
[32] |
D.J. Huey, J.C. Hu, K.A. Athanasiou, Science 338 (2012) 917-921.
DOI URL |
[33] |
M. He, Q. Wang, R. Wang, Y. Xie, W. Zhao, C. Zhao, ACS Appl. Mater. Interfaces 9 (2017) 15962-15974.
DOI URL |
[34] |
Q. Shao, S. Jiang, Adv. Mater. 27 (2015) 15-26.
DOI URL |
[35] |
S. Chen, L. Li, C. Zhao, J. Zheng, Polymer 51 (2010) 5283-5293.
DOI URL |
[36] |
A.G. Nejad, C.H. Park, C.S. Kim, Biomacromolecules 17 (2016) 1213-1223.
DOI URL |
[1] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[2] | Zenan Ma, Jiawei Li, Jijun Zhang, Aina He, Yaqiang Dong, Guoguo Tan, Mingqiang Ning, Qikui Man, Xincai Liu. Ultrathin, flexible, and high-strength Ni/Cu/metallic glass/Cu/Ni composite with alternate magneto-electric structures for electromagnetic shielding [J]. J. Mater. Sci. Technol., 2021, 81(0): 43-50. |
[3] | Zhuo Chen, Shun Chen, Yufei Xiong, Yuping Yang, Yang Zhang, Lijie Dong. Flexible coatings with microphase separation structure attained by copolymers and ultra-fine nanoparticles for endurable antifouling [J]. J. Mater. Sci. Technol., 2021, 82(0): 179-186. |
[4] | Xiaoyang Yi, Kuishan Sun, Jingjing Liu, Xiaohang Zheng, Xianglong Meng, Zhiyong Gao, Wei Cai. Tailoring the microstructure, martensitic transformation and strain recovery characteristics of Ti-Ta shape memory alloys by changing Hf content [J]. J. Mater. Sci. Technol., 2021, 83(0): 123-130. |
[5] | Haiming Zhang, Biao Zhao, Fu-Zhi Dai, Huimin Xiang, Zhili Zhang, Yanchun Zhou. (Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B: A novel high-entropy monoboride with good electromagnetic interference shielding performance in K-band [J]. J. Mater. Sci. Technol., 2021, 77(0): 58-65. |
[6] | Mingjun Li, Christoph Schlaich, Jianguang Zhang, Ievgen S. Donskyi, Karin Schwibbert, Frank Schreiber, Yi Xia, Jörg Radnik, Tanja Schwerdtle, Rainer Haag. Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction [J]. J. Mater. Sci. Technol., 2021, 68(0): 160-171. |
[7] | Jixing Lin, Xian Tong, Kun Wang, Zimu Shi, Yuncang Li, Matthew Dargusch, Cuie Wen. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68(0): 76-90. |
[8] | Jingfeng Zou, Lifeng Ma, Weitao Jia, Qichi Le, Gaowu Qin, Yuan Yuan. Microstructural and mechanical response of ZK60 magnesium alloy subjected to radial forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 228-238. |
[9] | Sajian Wu, Jing Li, Changji Li, Yiyi Li, Liangyin Xiong, Shi Liu. Preliminary study on the fabrication of 14Cr-ODS FeCrAl alloy by powder forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 49-57. |
[10] | Z.W. Yang, J.M. Lin, J.F. Zhang, Q.W. Qiu, Y. Wang, D.P. Wang, J. Song. An effective approach for bonding of TZM and Nb-Zr system: Microstructure evolution, mechanical properties, and bonding mechanism [J]. J. Mater. Sci. Technol., 2021, 84(0): 16-26. |
[11] | Jiansen Pan, Qingmei Peng, Guoliang Zhang, Qingyi Xie, Xiangjun Gong, Pei-Yuan Qian, Chunfeng Ma, Guangzhao Zhang. Antifouling mechanism of natural product-based coatings investigated by digital holographic microscopy [J]. J. Mater. Sci. Technol., 2021, 84(0): 200-207. |
[12] | Jianping Lai, Wen Hu, Amit Datye, Jingbei Liu, Jan Schroers, Udo D. Schwarz, Jiaxin Yu. Revealing the relationships between alloy structure, composition and plastic deformation in a ternary alloy system by a combinatorial approach [J]. J. Mater. Sci. Technol., 2021, 84(0): 97-104. |
[13] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[14] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[15] | Zibing An, Shengcheng Mao, Yinong Liu, Li Wang, Hao Zhou, Bin Gan, Ze Zhang, Xiaodong Han. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion [J]. J. Mater. Sci. Technol., 2021, 79(0): 109-117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||