J. Mater. Sci. Technol. ›› 2021, Vol. 77: 58-65.DOI: 10.1016/j.jmst.2020.09.047
• Research Article • Previous Articles Next Articles
Haiming Zhanga,b, Biao Zhaoc, Fu-Zhi Daia, Huimin Xianga, Zhili Zhangb,*(), Yanchun Zhoua,*(
)
Received:
2020-07-18
Revised:
2020-09-22
Accepted:
2020-09-27
Published:
2021-06-30
Online:
2020-11-16
Contact:
Zhili Zhang,Yanchun Zhou
About author:
yczhou@alum.imr.ac.cn (Y. Zhou).Haiming Zhang, Biao Zhao, Fu-Zhi Dai, Huimin Xiang, Zhili Zhang, Yanchun Zhou. (Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B: A novel high-entropy monoboride with good electromagnetic interference shielding performance in K-band[J]. J. Mater. Sci. Technol., 2021, 77: 58-65.
Transition metal element | Covalent radius (Å) | Radius difference (%) |
---|---|---|
Cr | 1.26 | 4.13 |
Mn | 1.26 | 4.13 |
Fe | 1.26 | 4.13 |
Co | 1.21 | 0 |
Mo | 1.31 | 8.26 |
Table 1. Covalent radius and the corresponding radius difference of transition metals (Cr, Mn, Fe, Co, and Mo) for design of HE (Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B. (The data are obtained from the database of Materials Studio program (Accelrys Inc., San Diego, USA)).
Transition metal element | Covalent radius (Å) | Radius difference (%) |
---|---|---|
Cr | 1.26 | 4.13 |
Mn | 1.26 | 4.13 |
Fe | 1.26 | 4.13 |
Co | 1.21 | 0 |
Mo | 1.31 | 8.26 |
Chemical formula | Composition analysis | ||||
---|---|---|---|---|---|
Cr (at. %) | Mn (at. %) | Fe (at. %) | Co (at. %) | Mo (at. %) | |
(Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B | 20.28 | 20.70 | 20.05 | 19.24 | 19.73 |
19.28 | 19.10 | 20.91 | 19.83 | 20.88 | |
18.00 | 22.30 | 20.68 | 17.62 | 21.40 | |
17.98 | 21.23 | 20.86 | 19.60 | 20.33 | |
19.41 | 20.64 | 18.10 | 21.09 | 20.77 | |
18.55 | 19.36 | 20.30 | 22.50 | 19.28 | |
19.78 | 17.98 | 22.50 | 19.31 | 20.42 | |
19.57 | 18.40 | 18.94 | 21.34 | 21.74 | |
19.97 | 19.37 | 19.17 | 21.77 | 19.71 | |
18.75 | 20.08 | 19.11 | 19.20 | 22.87 | |
Average value | 19.16 | 19.92 | 20.06 | 20.15 | 20.71 |
Standard deviation | 0.80 | 1.33 | 1.27 | 1.48 | 1.08 |
Nominal composition | (Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B |
Table 2. Chemical compositions obtained from EDS analysis of HE (Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B particles.
Chemical formula | Composition analysis | ||||
---|---|---|---|---|---|
Cr (at. %) | Mn (at. %) | Fe (at. %) | Co (at. %) | Mo (at. %) | |
(Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B | 20.28 | 20.70 | 20.05 | 19.24 | 19.73 |
19.28 | 19.10 | 20.91 | 19.83 | 20.88 | |
18.00 | 22.30 | 20.68 | 17.62 | 21.40 | |
17.98 | 21.23 | 20.86 | 19.60 | 20.33 | |
19.41 | 20.64 | 18.10 | 21.09 | 20.77 | |
18.55 | 19.36 | 20.30 | 22.50 | 19.28 | |
19.78 | 17.98 | 22.50 | 19.31 | 20.42 | |
19.57 | 18.40 | 18.94 | 21.34 | 21.74 | |
19.97 | 19.37 | 19.17 | 21.77 | 19.71 | |
18.75 | 20.08 | 19.11 | 19.20 | 22.87 | |
Average value | 19.16 | 19.92 | 20.06 | 20.15 | 20.71 |
Standard deviation | 0.80 | 1.33 | 1.27 | 1.48 | 1.08 |
Nominal composition | (Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B |
Molecular formula | (Cr0.2 Mn0.2 Fe0.2 Co0.2 Mo0.2 )B | MnB [ | FeB [ | CoB [ | CrB [ | MoB [ |
---|---|---|---|---|---|---|
Crystal system | Orthorhombic | Orthorhombic | Orthorhombic | Orthorhombic | Orthorhombic | Orthorhombic |
Space group | Pnma (62) | Pnma (62) | Pnma (62) | Pnma (62) | Cmcm (63) | Cmcm (63) |
Formula units | 4 | 4 | 4 | 4 | 4 | 4 |
Density (g/cm3 ) | 6.95 | 6.36 | 6.71 | 7.32 | 6.10 | 8.65 |
Lattice constants (Å) | a = 5.6675 | a = 5.5610 | a = 5.5032 | a = 5.2720 | a = 2.9681 | a = 3.1418 |
b = 2.9714 | b = 2.9773 | b = 2.9474 | b = 3.0424 | b = 7.8629 | b = 8.4961 | |
c = 4.2209 | c = 4.1472 | c = 4.0587 | c = 3.9501 | c = 2.9299 | c = 3.0721 |
Table 3. Refined structure parameters of HE (Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B powders together with those of single-component MnB, FeB, CoB, CrB, and MoB.
Molecular formula | (Cr0.2 Mn0.2 Fe0.2 Co0.2 Mo0.2 )B | MnB [ | FeB [ | CoB [ | CrB [ | MoB [ |
---|---|---|---|---|---|---|
Crystal system | Orthorhombic | Orthorhombic | Orthorhombic | Orthorhombic | Orthorhombic | Orthorhombic |
Space group | Pnma (62) | Pnma (62) | Pnma (62) | Pnma (62) | Cmcm (63) | Cmcm (63) |
Formula units | 4 | 4 | 4 | 4 | 4 | 4 |
Density (g/cm3 ) | 6.95 | 6.36 | 6.71 | 7.32 | 6.10 | 8.65 |
Lattice constants (Å) | a = 5.6675 | a = 5.5610 | a = 5.5032 | a = 5.2720 | a = 2.9681 | a = 3.1418 |
b = 2.9714 | b = 2.9773 | b = 2.9474 | b = 3.0424 | b = 7.8629 | b = 8.4961 | |
c = 4.2209 | c = 4.1472 | c = 4.0587 | c = 3.9501 | c = 2.9299 | c = 3.0721 |
Second-order elastic constants cij (GPa) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
c11 | c22 | c33 | c44 | c55 | c66 | c12 | c13 | c23 | ||||||
457 | 498 | 448 | 213 | 60 | 210 | 222 | 261 | 201 | ||||||
Bulk modulus B (GPa), shear modulus G (GPa), Young's modulus E (GPa), Poisson's ratio ν, Pugh's ratio (G/B) and Vickers hardness Hv (GPa) | ||||||||||||||
Ex | Ey | Ez | B | G | E | v | G/B | Hv | ||||||
457 | 222 | 261 | 308 | 130 | 342 | 0.315 | 0.422 | 9.6 |
Table 4 Second-order elastic constants, bulk modulus B (GPa), shear modulus G (GPa), Young's modulus E (GPa), Poisson's ratio ν, Pugh's ratio (G/B) and Vickers hardness Hv (GPa) of HE (Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B.
Second-order elastic constants cij (GPa) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
c11 | c22 | c33 | c44 | c55 | c66 | c12 | c13 | c23 | ||||||
457 | 498 | 448 | 213 | 60 | 210 | 222 | 261 | 201 | ||||||
Bulk modulus B (GPa), shear modulus G (GPa), Young's modulus E (GPa), Poisson's ratio ν, Pugh's ratio (G/B) and Vickers hardness Hv (GPa) | ||||||||||||||
Ex | Ey | Ez | B | G | E | v | G/B | Hv | ||||||
457 | 222 | 261 | 308 | 130 | 342 | 0.315 | 0.422 | 9.6 |
Fig. 8. EMI shielding effectiveness (a) and A (Absorptivity), R (Reflectivity), and T (Transmittivity) (b) of HE (Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B (HE TMB-1) bulk with 3.0 mm thickness.
[1] |
A. Christ, M. Douglas, J. Nadakuduti, N. Kuster, Proc. IEEE 101 (2013) 1482-1493.
DOI URL |
[2] | W.Va. Loock, in: Proc. Int. Conf. Electromagn. Interf. Compat., 2008, pp.399-403. |
[3] | K. Murakawa, N. Hirasawa, H. Ito, Y. Ogura, in: Int. Symp. Electromagn. Compat. Tokyo, 2014, pp.581-584. |
[4] | L. Palisek, L. Suchy, EMC Eur. York (2011) 18-21. |
[5] |
A.K. Singh, A. Shishkin, T. Koppel, N. Gupta, Compos. Pt. B-Eng. 149 (2018) 188-197.
DOI URL |
[6] | S.J. Ding, Y.Z. Zhao, D.B. Ge, Mater. Rep. 22 (2008) 30-37. |
[7] |
D. D., D.L. Chung, J. Mater. Eng. Perform. 9 (2000) 350-354.
DOI URL |
[8] |
D. Wanasinghe, F. Aslani, Compos. Pt. B-Eng. 176 (2019), 107207.
DOI URL |
[9] | H. Abbasi, M. Antunes, J.I. Velasco, Constr. Build. Mater. 103 (2019) 319-373. |
[10] |
M. Jung, Y. Lee, S.-G. Hong, J. Moon, Cem. Concr. Res. 131 (2020), 106017.
DOI URL |
[11] |
J. Xi, Y. Li, E. Zhou, Y. Liu, W. Gao, Y. Guo, J. Ying, Z. Chen, G. Chen, C. Gao, Carbon 135 (2018) 44-51.
DOI URL |
[12] |
T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee, M.-K. Kim, S.J. Kim, D. Kim, Y. Gogotsi, S.O. Kim, C.M. Koo, Adv. Mater. 32 (2020), 1906769.
DOI URL |
[13] |
D. MIchelli, C. Apollo, R. Pastore, R.B. Morles, S. Laurenzi, M. Marchetti, Acta Astronaut. 69 (2011) 747-757.
DOI URL |
[14] |
H. Mei, X. Zhao, X. Gui, D. Lu, D. Han, S. Xiao, L. Cheng, Ceram. Int. 45 (2019) 17144-17151.
DOI URL |
[15] |
S.G. Li, Y.Q. Tan, J.X. Xue, T. Liu, X.S. Zhou, H.B. Zhang, AIP Adv. 8 (2018), 015027.
DOI URL |
[16] |
W.L. Song, M.S. Cao, Z.L. Hou, M.M. Lu, C.Y. Wang, J. Yuan, L.Z. Fan, Appl. Phys. A 116 (2014) 1779-1783.
DOI URL |
[17] |
Y. Tan, H. Luo, X. Zhou, S. Peng, H. Zhang, Sci. Rep. 8 (2018) 7935.
DOI URL |
[18] |
Y.C. Zhou, H.M. Xiang, Z.H. Feng, Z.P. Li, J. Mater. Sci. Technol. 31 (2015) 285-294.
DOI URL |
[19] |
W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, J.A. Zaykoski, J. Am. Ceram. Soc. 90 (2007) 1347-1364.
DOI URL |
[20] |
W.G. Fahrenholtz, G.E. Hilmas, Scr. Mater. 129 (2017) 94-99.
DOI URL |
[21] |
S. Okada, K. Kudou, K. Iizumi, K. Kudaka, I. Higashi, T. Lundström, J. Cryst. Growth 166 (1996) 429-435.
DOI URL |
[22] |
I. Campos, M. Palomar, A. Amador, R. Ganem, J. Martinez, Surf. Coat. Technol. 201 (2006) 2438-2442.
DOI URL |
[23] |
E. Galvanetto, F. Borgioli, T. Bacci, G. Pradelli, Wear 260 (2006) 825-831.
DOI URL |
[24] | A. Bartsch, A. Leonhardt, Surf. Coat. Technol. 116-119 (1999) 386-390. |
[25] | A.S. Dehlinger, J.F. Pierson, A. Roman, Ph. Bauer, Surf. Coat. Technol. 174-175 (2003) 331-337. |
[26] |
S. Rades, A. Kornowski, H. Weller, B. Albert, ChemPhysChem 12 (2011) 1756-1760.
DOI URL |
[27] | P.K. Liao, K.E. Spear, Bull. Alloy Phase Diagrams 9 (1988) 458-462. |
[28] |
J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, J. Luo, Sci. Rep. 6 (2016) 37946.
DOI URL |
[29] |
J.Y. Zhou, J.Y. Zhang, F. Zhang, B. Niu, L.W. Lei, W.M. Wang, Ceram. Int. 44 (2018) 22014-22018.
DOI URL |
[30] |
E. Castle, T. Csanádi, S. Grasso, J. Dusza, M. Reece, Sci. Rep. 8 (2018) 8609.
DOI URL |
[31] |
G. Tallarita, R. Licheri, S. Garroni, R. Orrù, G. Cao, Scr. Mater. 158 (2019) 100-104.
DOI URL |
[32] |
Y. Zhang, W.-M. Guo, Z.-B. Jiang, Q.-Q. Zhu, S.-k. Sun, Y. You, K. Plucknett, H.-T. Lin, Scr. Mater. 164 (2019) 135-139.
DOI URL |
[33] |
B.L. Ye, T.Q. Wen, D. Liu, Y.H. Chu, Corros. Sci. 153 (2019) 327-332.
DOI URL |
[34] |
M.-H. Tsai, J.-W. Yeh, Mater. Res. Lett. 2 (2014) 107-123.
DOI URL |
[35] |
Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19 (2016) 349-362.
DOI URL |
[36] |
T. Jin, X. Sang, R.R. Unocic, R.T. Kinch, X. Liu, J. Hu, H. Liu, S. Dai, Adv. Mater. 30 (2018), 1707512.
DOI URL |
[37] |
H. Chen, Z.F. Zhao, H.M. Xiang, F.-Z. Dai, J. Zhang, S.G. Wang, J.C. Liu, Y.C. Zhou, J. Mater. Sci. Technol. 38 (2020) 80-85.
DOI URL |
[38] |
Z.F. Zhao, H.M. Xiang, F.-Z. Dai, Z.J. Peng, Y.C. Zhou, J. Mater. Sci. Technol. 35 (2019) 2647-2651.
DOI URL |
[39] |
Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou, Z. Zhang, Adv. Funct. Mater. 26 (2016) 303-310.
DOI URL |
[40] |
D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, Z.M. Li, Adv. Funct. Mater. 25 (2015) 559-566.
DOI URL |
[41] |
B. Zhao, S. Zeng, X. Li, X. Guo, Z. Bai, B. Fan, R. Zhang, J. Mater. Chem. C Mater. Opt. Electron. Devices 8 (2020) 500-509.
DOI URL |
[42] |
T.K. Gupta, B.P. Singh, S.R. Dhakate, V.N. Singh, R.B. Mathur, J. Mater. Chem. A Mater. Energy Sustain. 1 (2013) 9138-9149.
DOI URL |
[43] |
M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clarc, M.C. Payne, J. Phys. Condens. Matter 14 (2002) 2717-2744.
DOI URL |
[44] |
J.S. Lin, A. Qteish, M.C. Payne, V. Heine, Phys. Rev. B 47 (1993) 4174-4180.
DOI URL |
[45] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI URL |
[46] |
J.D. Pack, H.J. Monkhorst, Phys. Rev. B 16 (1977) 1748-1749.
DOI URL |
[47] |
B.G. Prfrommer, M. Côté, S.G. Loiue, M.L. Cohen, J. Comput. Phys. 131 (1977) 233-240.
DOI URL |
[48] |
V. Milman, M.C. Warren, J. Phys. Condens. Matter 13 (2001) 241-251.
DOI URL |
[49] |
P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, J. Appl. Phys. 84 (1998) 4891-4904.
DOI URL |
[50] | W. Voigt, Lehrbuch der Kristallphysik, Taubner, Leipzig, 1928. |
[51] | A. Reuss, Z. Angew, Math. Mech. 9 (1929) 49-58. |
[52] | R. Hill, Proc. Phys. Soc. A 65 (1952) 349-354. |
[53] | D.J. Green, An Introduction to the Mechanical Properties of Ceramics, Cambridge University Press, Cambridge, U. K,1993. |
[54] |
X.-Q. Chen, H.Y. Niu, D.Z. Li, Y.Y. Li, Intermetallics 19 (2011) 1275-1281.
DOI URL |
[55] |
W.Won. Ng, H.F. McMurdie, B. Paretzkin, Y. Zhang, K.L. Davis, C.R. Hubbard, A.L. Dragoo, J.M. Stewart, Powder Diffr. 2 (1987) 191-201.
DOI URL |
[56] | C. Kapfenberger, B. Albert, R. Poettgen, H. Huppertz, Z. Kristallogr. 221 (2006) 477-481. |
[57] | K. Traore, J.P. Kappler, Bull. Soc. Chim. Fr. 1 (1979) 419-425. |
[58] |
H.M. Zhang, F.-Z. Dai, H.M. Xiang, X.H. Wang, Z.L. Zhang, Y.C. Zhou, J. Mater. Sci. Technol. 35 (2019) 1593-1600.
DOI URL |
[59] |
M. Ade, H. Hillebrecht, Inorg. Chem. 54 (2015) 6122-6135.
DOI URL |
[60] | S.F. Pugh, Philos. Mag. Abingdon (Abingdon) 45 (1954) 823-843. |
[61] |
J. Zou, H.B. Ma, L. Chen, Y.J. Wang, G.J. Zhang, Scr. Mater. 164 (2019) 105-109.
DOI URL |
[62] |
P.K. Liao, K.E. Spear, Bull. Alloy Phase Diagrams 7 (1986) 232-234.
DOI URL |
[63] |
P.K. Liao, K.E. Spear, Bull. Alloy Phase Diagrams 7 (1986) 543-544.
DOI URL |
[64] |
H. Okamoto, J. Phase Equilib. Diffus. 25 (2004) 297-298.
DOI URL |
[65] |
P.K. Liao, K.E. Spear, Bull. Alloy Phase Diagrams 9 (1988) 452-453.
DOI URL |
[1] | Jixing Lin, Xian Tong, Kun Wang, Zimu Shi, Yuncang Li, Matthew Dargusch, Cuie Wen. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68(0): 76-90. |
[2] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[3] | Yuan Wu, Fei Zhang, Xiaoyuan Yuan, Hailong Huang, Xiaocan Wen, Yihan Wang, Mengyuan Zhang, Honghui Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, Zhaoping Lu. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 214-220. |
[4] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[5] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
[6] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
[7] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
[8] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
[9] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
[10] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
[11] | Xiaozhao Ma, Zhilei Xiang, Chao Tan, Zhitian Wang, Yingying Liu, Ziyong Chen, Qun Shu. Influences of boron contents on microstructures and mechanical properties of as-casted near α titanium alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 1-18. |
[12] | Ahmad Ostovari Moghaddam, Nataliya A. Shaburova, Marina N. Samodurova, Amin Abdollahzadeh, Evgeny A. Trofimov. Additive manufacturing of high entropy alloys: A practical review [J]. J. Mater. Sci. Technol., 2021, 77(0): 131-162. |
[13] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[14] | Jinfeng Ling, Dandan Huang, Kewu Bai, Wei Li, Zhentao Yu, Weimin Chen. High-throughput development and applications of the compositional mechanical property map of the β titanium alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 201-210. |
[15] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||