J. Mater. Sci. Technol. ›› 2021, Vol. 72: 23-28.DOI: 10.1016/j.jmst.2020.07.019
• Research Article • Previous Articles Next Articles
Wen Zhanga,b, Lei Chena,b,*(), Chenguang Xua,b, Wenyu Lua,b, Yujin Wanga,b,*(
), Jiahu Ouyanga,b, Yu Zhoua,b
Received:
2020-05-25
Revised:
2020-07-07
Accepted:
2020-07-31
Published:
2021-05-10
Online:
2021-05-10
Contact:
Lei Chen,Yujin Wang
About author:
wangyuj@hit.edu.cn (Y. Wang).Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering[J]. J. Mater. Sci. Technol., 2021, 72: 23-28.
Sample | Sintering parameter (oC/MPa/min) | Lattice parameter (nm) | FWHM (111) | Relative density (%) | Average grain size (μm) | Reference |
---|---|---|---|---|---|---|
(TiZrHfNbTaMo)C | PS 2100/0/60 | 0.4488 | 0.1850 | 84.4 | - | Present Work |
PS 2200/0/60 | 0.4485 | 0.1420 | 91.5 | 2.8 ± 1.3 | ||
PS 2300/0/60 | 0.4487 | 0.1538 | 95.2 | 3.7 ± 1.8 | ||
PS 2400/0/60 | 0.4488 | 0.1157 | 96.5 | 7.0 ± 3.1 | ||
PS 2500/0/60 | 0.4486 | 0.1445 | 97.0 | 15.2 ± 6.5 | ||
(ZrHfNbTa)C | SPS 1800/40/10-2300/16/2 | - | - | 99 | - | [ |
(TiZrHfNbTa)C | SPS 2000/30/5 | 0.4518 | - | 93 | 16.4 ± 0.5 | [ |
(TiZrHfNbTa)C | SPS 2200/30/10 | 0.4510 | - | 99 | - | [ |
(TiZrHfNbTa)C | HP 1800/30/30 | 0.4497 | - | 95.3 | - | [ |
(TiZrHfNbTa)C | HP 1900/32/60 | 0.4502 | - | 99.3 | 1.2 ± 0.7 | [ |
(TiZrNbTaMo)C | HP 1850/30/60-2100/30/30 | 0.4424 | - | 98.6 | 8.8 ± 3.0 | [ |
Table 1 Lattice parameter, full width at half maximum (FWHM) of (111), relative density and average grain size of (TiZrHfNbTaMo)C samples compared with the data from the literatures.
Sample | Sintering parameter (oC/MPa/min) | Lattice parameter (nm) | FWHM (111) | Relative density (%) | Average grain size (μm) | Reference |
---|---|---|---|---|---|---|
(TiZrHfNbTaMo)C | PS 2100/0/60 | 0.4488 | 0.1850 | 84.4 | - | Present Work |
PS 2200/0/60 | 0.4485 | 0.1420 | 91.5 | 2.8 ± 1.3 | ||
PS 2300/0/60 | 0.4487 | 0.1538 | 95.2 | 3.7 ± 1.8 | ||
PS 2400/0/60 | 0.4488 | 0.1157 | 96.5 | 7.0 ± 3.1 | ||
PS 2500/0/60 | 0.4486 | 0.1445 | 97.0 | 15.2 ± 6.5 | ||
(ZrHfNbTa)C | SPS 1800/40/10-2300/16/2 | - | - | 99 | - | [ |
(TiZrHfNbTa)C | SPS 2000/30/5 | 0.4518 | - | 93 | 16.4 ± 0.5 | [ |
(TiZrHfNbTa)C | SPS 2200/30/10 | 0.4510 | - | 99 | - | [ |
(TiZrHfNbTa)C | HP 1800/30/30 | 0.4497 | - | 95.3 | - | [ |
(TiZrHfNbTa)C | HP 1900/32/60 | 0.4502 | - | 99.3 | 1.2 ± 0.7 | [ |
(TiZrNbTaMo)C | HP 1850/30/60-2100/30/30 | 0.4424 | - | 98.6 | 8.8 ± 3.0 | [ |
Fig. 4. SEM micrographs and corresponding EDS mappings of (TiZrHfNbTaMo)C samples sintered at different temperatures: a) 2200 °C, b) 2300 °C, c) 2400 °C, d) 2500 °C.
Fig. 5. TEM analysis of (TiZrHfNbTaMo)C sample sintered at 2400 °C: a) HAADF image; b) HRTEM image; c) SAED pattern and d) corresponding EDS compositional maps.
Fig. 6. a) Vickers’ indentation and nanoindentation hardness of (TiZrHfNbTaMo)C sintered at different temperatures and b) comparison of hardness between (TiZrHfNbTaMo)C ceramics sintered at 2400 °C and other quinary high-entropy carbide ceramics.
[1] | K. Upadhya, J.M. Yang, W.P. Hoffman, Am. Ceram. Soc. Bull. 76 (1997) 51-56. |
[2] |
W.G. Fahrenholtz, G.E. Hilmas, Scr. Mater. 129 (2017) 94-99.
DOI URL |
[3] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[4] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[5] |
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.P. Maria, Nat. Commun. 6 (2015) 8485.
DOI URL |
[6] |
Z.F. Zhao, H.M. Xiang, F.Z. Dai, Z.J. Peng, Y.C. Zhou, J. Mater. Sci. Technol. 35 (2019) 2647-2651.
DOI URL |
[7] |
J. Gild, M. Samiee, J.L. Braun, T. Harrington, H. Vega, P.E. Hopkins, K. Vecchio, J. Luo, J. Eur. Ceram. Soc. 38 (2018) 3578-3584.
DOI URL |
[8] |
J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, J. Luo, Sci. Rep. 6 (2016) 37946.
DOI URL |
[9] |
G. Tallarita, R. Licheri, S. Garroni, R. Orrù, G. Cao, Scr. Mater. 158 (2019) 100-104.
DOI URL |
[10] |
Y. Zhang, W.M. Guo, Z.B. Jiang, Q.Q. Zhu, S.K. Sun, Y. You, K. Plucknett, H.T. Lin, Scr. Mater. 164 (2019) 135-139.
DOI URL |
[11] |
T. Jin, X. Sang, R.R. Unocic, R.T. Kinch, X. Liu, J. Hu, H. Liu, S. Dai, Adv. Mater. 30 (2018), 1707512.
DOI URL |
[12] |
E. Castle, T. Csanadi, S. Grasso, J. Dusza, M. Reece, Sci. Rep. 8 (2018) 8609.
DOI URL |
[13] |
Y. Yang, W. Wang, G.Y. Gan, X.F. Shi, B.Y. Tang, Phys. B. Condens. Matter. 550 (2018) 163-170.
DOI URL |
[14] |
J. Zhou, J. Zhang, F. Zhang, B. Niu, L. Lei, W. Wang, Ceram. Int. 44 (2018) 22014-22018.
DOI URL |
[15] | H. Chen, H.M. Xiang, F.Z. Dai, J.C. Liu, Y.M. Lei, J. Zhang, Y.C. Zhou, J. Mater. Sci. Technol. 35 (2019) 1700-1705. |
[16] |
X.L. Yan, L. Constantin, Y.F. Lu, J.F. Silvain, M. Nastasi, B. Cui, J. Am. Ceram. Soc. 101 (2018) 4486-4491.
DOI URL |
[17] |
B.L. Ye, T.Q. Wei, D. Liu, Y.H. Chu, Corros. Sci. 153 (2019) 327-332.
DOI URL |
[18] |
B.L. Ye, T.Q. Wen, K.H. Huang, C.Z. Wang, Y.H. Chu, J. Am. Ceram. Soc. 102 (2019) 4344-4352.
DOI URL |
[19] |
X.F. Wei, J.X. Liu, F. Li, Y. Qin, Y.C. Liang, G.J. Zhang, J. Eur. Ceram. Soc. 39 (2019) 2989-2994.
DOI URL |
[20] |
E. Chicardi, C. Garcia-Garrido, F.J. Gotor, Ceram. Int. 45 (2019) 21858-21863.
DOI |
[21] |
P. Sarker, T.J. Harrington, C. Toher, C. Oses, M. Samiee, J.P. Maria, D.W. Brenner, K.S. Vecchio, S. Curtarolo, Nat. Commun. 9 (2018) 4980.
DOI URL |
[22] |
T.J. Harrington, J. Gild, P. Sarker, C. Toher, C.M. Rost, O.F. Dippo, C. McElfresh, K. Kaufmann, E. Marin, L. Borowski, P.E. Hopkins, J. Luo, S. Curtarolo, D.W. Brenner, K.S. Vecchio, Acta Mater. 166 (2019) 271-280.
DOI |
[23] |
K. Wang, L. Chen, C.G. Xu, W. Zhang, Z.G. Liu, Y.J. Wang, J.H. Ouyang, X.H. Zhang, Y.D. Fu, Y. Zhou, J. Mater. Sci. Technol. 39 (2020) 99-105.
DOI URL |
[24] |
M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2 (2014) 107-123.
DOI URL |
[25] |
Y. Li, H. Katsui, T. Goto, Ceram. Int. 41 (2015) 7103-7108.
DOI URL |
[26] | B.L. Ye, Y.H. Chu, K.H. Huang, D. Liu, J. Am. Ceram. Soc. 102 (2019) 919-923. |
[27] |
L. Feng, W.G. Fahrenholtz, G.E. Hilmas, Y. Zhou, Scr. Mater. 162 (2019) 90-93.
DOI URL |
[28] | L. Feng, W.G. Fahrenholtz, G.E. Hilmas, J. Am. Ceram. Soc. 102 (2019) |
7217-7224. | |
[29] |
A.G. Evans, E.A. Charles, J. Am. Ceram. Soc. 59 (1976) 371-372.
DOI URL |
[30] |
B.L. Ye, T.Q. Wen, M.C. Nguyen, L.Y. Hao, C.Z. Wang, Y.H. Chu, Acta. Mater. 170 (2019) 15-23.
DOI URL |
[31] |
J.X. Liu, Y.M. Kan, G.J. Zhang, J. Am. Ceram. Soc. 93 (2010) 980-986.
DOI URL |
[32] |
L.Y. Zhao, D.C. Jia, X.M. Duan, Z.H. Yang, Y. Zhou, Int J Refract Met Hard Mater. 29 (2011) 516-521.
DOI URL |
[33] |
Y.F. Ye, Q. Wang, C.T. Liu, Y. Yang, Mater. Today. 19 (2016) 349-362.
DOI URL |
[1] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[2] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[3] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[4] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[5] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[6] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 69(0): 200-211. |
[7] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
[8] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[9] | Xuewei Yan, Qingyan Xu, Guoqiang Tian, Quanwei Liu, Junxing Hou, Baicheng Liu. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67(0): 36-49. |
[10] | Yuting Wu, Chong Li, Xingchuan Xia, Hongyan Liang, Qiqi Qi, Yongchang Liu. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'-strengthened superalloys [J]. J. Mater. Sci. Technol., 2021, 67(0): 95-104. |
[11] | Haoze Li, Ming Gao, Min Li, Yingche Ma, Kui Liu. Microstructural evolution and tensile property of 1Cr15Ni36W3Ti superalloy during thermal exposure [J]. J. Mater. Sci. Technol., 2021, 73(0): 193-204. |
[12] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
[13] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
[14] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
[15] | Md. R.U. Ahsan, Xuesong Fan, Gi-Jeong Seo, Changwook Ji, Mark Noakes, Andrzej Nycz, Peter K. Liaw, Duck Bong Kim. Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625 [J]. J. Mater. Sci. Technol., 2021, 74(0): 176-188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||