J. Mater. Sci. Technol. ›› 2021, Vol. 84: 16-26.DOI: 10.1016/j.jmst.2020.09.054
• Research Article • Previous Articles Next Articles
Z.W. Yanga, J.M. Lina, J.F. Zhanga, Q.W. Qiub,*(), Y. Wanga,*(
), D.P. Wanga, J. Songb
Received:
2020-08-17
Revised:
2020-09-16
Accepted:
2020-09-30
Published:
2021-09-10
Online:
2021-02-01
Contact:
Q.W. Qiu,Y. Wang
About author:
wangycl@tju.edu.cn (Y. Wang).Z.W. Yang, J.M. Lin, J.F. Zhang, Q.W. Qiu, Y. Wang, D.P. Wang, J. Song. An effective approach for bonding of TZM and Nb-Zr system: Microstructure evolution, mechanical properties, and bonding mechanism[J]. J. Mater. Sci. Technol., 2021, 84: 16-26.
Fig. 1. (a) Schematic of LMF bonding equipment; (b, c) microstructure and content of parent materials; (d) XRD results of parent materials; (e) bonding parameter; (f) TEM image and SAED patterns of TZM.
Fig. 2. Comparison of the microstructure of TZM/Nb-Zr joints obtained by different bonding methods with 120 μm Ni foil at 1200 ℃ for 30 min: (a, b) LMF bonding; (c, d) contact-reaction brazing; (e) bright field image of Ni10Zr7 compound and its SAED pattern; (f) bright field image of NiZr compound and its SAED pattern.
Point | Ni | Nb | Zr | Possible phase |
---|---|---|---|---|
A | – | 100.00 | – | Nb |
B | 40.18 | 22.61 | 37.21 | Ni40Nb23Zr37 |
C | 60.17 | 13.79 | 26.04 | Ni60Nb13Zr27 |
D | – | – | 100.00 | Zr |
E | – | 84.39 | 15.61 | (Nb, Zr) |
Table 1 Chemical compositions of each phase (at.%) in Fig. 2.
Point | Ni | Nb | Zr | Possible phase |
---|---|---|---|---|
A | – | 100.00 | – | Nb |
B | 40.18 | 22.61 | 37.21 | Ni40Nb23Zr37 |
C | 60.17 | 13.79 | 26.04 | Ni60Nb13Zr27 |
D | – | – | 100.00 | Zr |
E | – | 84.39 | 15.61 | (Nb, Zr) |
Fig. 3. Mechanical properties of TZM/Nb-Zr joints: (a) hardness and Young's modulus of reaction phases formed in contact-reaction brazing joint; (b) typical load-displacement curves; (c) joint shear strength tested at different temperatures; (d, e) fracture path and morphology analysis of contact-reaction brazed joint after shear test at 600 ℃; (f, g) fracture path and morphology analysis of LMF bonded joint after shear tests at 600 ℃.
Fig. 4. Interfacial microstructure and elemental line profiles across TZM/Nb-Zr joint obtained by diffusion bonding and LMF bonding: (a, c) LMF bonding; (b, d) direct diffusion bonding.
Fig. 5. Effect of surface roughness of TZM parent alloy on the interfacial microstructure and shear strength of direct diffusion bonded TZM and Nb-Zr joints.
Fig. 6. Schematic diagram of microstructure evolution mechanism of TZM/Ni/Nb-Zr joints: (a) atomic diffusion behavior and liquid phase appearing; (b, c) formation of contact-reaction brazed joint; (d, e) formation of LMF bonded joint.
Fig. 7. Typical microstructure images of TZM/Ni/Nb-Zr contact-reaction brazed joint and calculation of interface energy transition: (a) joint microstructure; (b, c) model for interface transformation in diffusion zone; (d) calculation of interface energy transition.
Fig. 8. Analysis of (Mo, Nb) diffusion layer: (a) TEM dark field image of the interface between TZM and (Mo, Nb) diffusion layer; (b) HRTEM observation of the area nearby point B; (c, d) HAADF and BF analysis of Mo atomic columns selected from (b); (e) elemental distribution of Mo, Nb, Zr, Ti and Ni along the yellow line in (a); (f, g) elements mapping of Nb and Mo.
Point | Mo | Nb | Zr | Ni | Ti |
---|---|---|---|---|---|
A | 52.41 | 47.32 | 0.24 | 0.00 | 0.03 |
B | 67.91 | 31.27 | 0.78 | 0.03 | 0.01 |
C | 85.41 | 11.91 | 2.66 | 0.00 | 0.02 |
D | 99.53 | 0.10 | 0.15 | 0.00 | 0.22 |
Table 2 Chemical compositions of the marked points in Fig. 8 (at.%).
Point | Mo | Nb | Zr | Ni | Ti |
---|---|---|---|---|---|
A | 52.41 | 47.32 | 0.24 | 0.00 | 0.03 |
B | 67.91 | 31.27 | 0.78 | 0.03 | 0.01 |
C | 85.41 | 11.91 | 2.66 | 0.00 | 0.02 |
D | 99.53 | 0.10 | 0.15 | 0.00 | 0.22 |
Fig. 9. The minimum energy path for the exchange process between (a) Nb and a vacancy in pure Mo and vacancy in Mo with Ni nearby; (b) Mo and a vacancy in pure Nb and vacancy in Nb with Ni nearby; (c) the value of D/D0 in different diffusion processes at 1000-1500 K.
Fig. 10. Microstructure and corresponding elements line profiles across the interface of Mo/Nb and Mo/Cu joints obtained by LMF bonding: (a) Mo/Nb joint; (b) Mo /Cu joint.
[1] |
Y.K. Zhang, C. Simon, T. Volkmann, M. Kolbe, D. Herlach, G. Wilde, Appl. Phys. Lett. 105 (2014), 041908.
DOI URL |
[2] |
J.H. Evans, Nature 278 (1979) 728-729.
DOI URL |
[3] |
J.A. Beach, M. Wang, P. Bellon, S. Dillon, Y. Ivanisenko, T. Boll, R.S. Averback, Acta Mater. 140 (2017) 217-223.
DOI URL |
[4] |
G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, E. Ma, Nat. Mater. 12 (2013) 344-350.
DOI PMID |
[5] | J. Hebda, Niobium Alloys and High Temperature Applications, in: Niobium Science & Technology: Proceedings of the International Symposium Niobium, Orlando, Florida, 2001. |
[6] |
L. Liu, G.S. Zou, H. Mori, S. ESmaeili, Y.N. Zhou, Mater. Des. 92 (2016) 445-449.
DOI URL |
[7] |
J.L. Du, Y. Huang, C. Xiao, Y.C. Liu, J. Mater. Sci. Technol. 34 (2018) 689-694.
DOI URL |
[8] |
X.C. Pan, J. Zhang, Y. Huang, Y.C. Liu, J. Alloys. Compd. 723 (2017) 1053-1061.
DOI URL |
[9] |
D.F. Jiang, J.Y. Long, M.Y. Cai, Y. Lin, P.X. Fan, H.J. Zhang, M.L. Zhong, Mater. Des. 114 (2017) 185-193.
DOI URL |
[10] |
B. Lee, H. Jeon, K.W. Kwon, H.J. Lee, Acta Mater. 61 (2013) 6736-6742.
DOI URL |
[11] |
V. Srikanth, A. Laik, G.K. Dey, Mater. Des. 126 (2017) 141-154.
DOI URL |
[12] |
Z.C. Wang, C. Li, J.L. Qi, J.C. Feng, J. Cao, Int. J. Hydrogen Energy 44 (2019) 6929-6937.
DOI URL |
[13] |
J.M. Lin, Z.W. Yang, H.H. Wei, Y. Wang, Z.Q. Ma, D.P. Wang, J. Alloy. Compd. 743 (2018) 780-788.
DOI URL |
[14] |
J. Zhang, Q. Shen, G.Q. Luo, M.J. Li, L.M. Zhang, Mater. Des. 39 (2012) 81-86.
DOI URL |
[15] |
J. Zhang, G.Q. Luo, Y.Y. Wang, Q. Shen, L.M. Zhang, Mater. Lett. 83 (2012) 189-191.
DOI URL |
[16] |
X.G. Song, X. Tian, H.Y. Zhao, X.Q. Si, G.H. Han, J.C. Feng, Mater. Sci. Eng. A 653 (2016) 115-121.
DOI URL |
[17] |
C.Z. Lin, R.K. Shiue, Int. J. Refract. Met. Hard Mater. 71 (2018) 206-210.
DOI URL |
[18] |
H.W. Chuang, D.W. Liaw, Y.C. Du, R.K. Shiue, Mater. Sci. Eng. A 390 (2005) 350-361.
DOI URL |
[19] |
A. Laik, P. Mishra, K. Bhanumurthy, G.B. Kale, B.P. Kashyap, Acta Mater. 59 (2011) 5092-5102.
DOI URL |
[20] |
S. Primig, H. Leitner, W. Knabl, A. Lorich, R. Stickler, Metall. Mater. Trans. A 43 (2012) 4806-4818.
DOI URL |
[21] |
A. Chaudhuri, A.N. Behera, A. Sarkar, R. Kapoor, R.K. Ray, Acta Mater. 164 (2019) 153-164.
DOI |
[22] |
A.N. Behera, A. Chaudhuri, R. Kapoor, J.K. Chakravartty, S. Suwas, Mater. Des. 92 (2016) 750-759.
DOI URL |
[23] |
H. Okamoto, J. Phase Equilib. Diffus. 28 (2007), 409-409.
DOI URL |
[24] | W. Kohn, L.J. Sham, Phys. Rev. A 140 (1965) 1133-1138. |
[25] | G. Henkelman, B.P. Uberuaga, H. Jonsson, J. Chem. Phys. 113 (2000) 9901-9904. |
[26] | G. Henkelman, H. Jonsson, J. Chem. Phys. 113 (2000) 9978-9985. |
[27] |
G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558-561.
PMID |
[28] | G. Kresse, J. Furthmüller, Phys. Rev. B 16 (1996) 11169-11186. |
[29] | P.E. Blöchl, Phys. Rev. B 24 (1994) 17953-17979. |
[30] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
PMID |
[31] | L.F. Deo, M.F. de Oliveira, Mater.Charact. 127 (2017) 60-63. |
[32] |
A. Hill, E.R. Wallach, Acta Metall. 37 (1989) 2425-2437.
DOI URL |
[33] |
L.J. Zhang, Z.Y. Chen, Q.M. Hu, R. Yang, J. Alloys. Compd. 740 (2018) 156-166.
DOI URL |
[34] |
D.Z. Wang, D.D. Chen, Y.H. Yang, A.K. Sun, Int. J. Refract. Met. Hard Mater. 51 (2015) 239-242.
DOI URL |
[1] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[2] | Zenan Ma, Jiawei Li, Jijun Zhang, Aina He, Yaqiang Dong, Guoguo Tan, Mingqiang Ning, Qikui Man, Xincai Liu. Ultrathin, flexible, and high-strength Ni/Cu/metallic glass/Cu/Ni composite with alternate magneto-electric structures for electromagnetic shielding [J]. J. Mater. Sci. Technol., 2021, 81(0): 43-50. |
[3] | Cecilie V. Funch, Alessandro Palmas, Kinga Somlo, Emilie H. Valente, Xiaowei Cheng, Konstantinos Poulios, Matteo Villa, Marcel A.J. Somers, Thomas L. Christiansen. Targeted heat treatment of additively manufactured Ti-6Al-4V for controlled formation of Bi-lamellar microstructures [J]. J. Mater. Sci. Technol., 2021, 81(0): 67-76. |
[4] | Yongxiao Wang, Xinwu Ma, Guoqun Zhao, Xiao Xu, Xiaoxue Chen, Cunsheng Zhang. Microstructure evolution of spray deposited and as-cast 2195 Al-Li alloys during homogenization [J]. J. Mater. Sci. Technol., 2021, 82(0): 161-178. |
[5] | Xiaoyang Yi, Kuishan Sun, Jingjing Liu, Xiaohang Zheng, Xianglong Meng, Zhiyong Gao, Wei Cai. Tailoring the microstructure, martensitic transformation and strain recovery characteristics of Ti-Ta shape memory alloys by changing Hf content [J]. J. Mater. Sci. Technol., 2021, 83(0): 123-130. |
[6] | Yang Bao, Lujun Huang, Shan Jiang, Rui Zhang, Qi An, Caiwei Zhang, Lin Geng, Xinxin Ma. A novel Ti cored wire developed for wire-feed arc deposition of TiB/Ti composite coating [J]. J. Mater. Sci. Technol., 2021, 83(0): 145-160. |
[7] | Y.M. Ren, X. Lin, H.O. Yang, H. Tan, J. Chen, Z.Y. Jian, J.Q. Li, W.D. Huang. Microstructural features of Ti-6Al-4V manufactured via high power laser directed energy deposition under low-cycle fatigue [J]. J. Mater. Sci. Technol., 2021, 83(0): 18-33. |
[8] | Yun-Qi Tong, Qiu-Sheng Shi, Mei-Jun Liu, Guang-Rong Li, Chang-Jiu Li, Guan-Jun Yang. Lightweight epoxy-based abradable seal coating with high bonding strength [J]. J. Mater. Sci. Technol., 2021, 69(0): 129-137. |
[9] | Xiaoxue Yuan, Ran Liu, Wenchang Zhang, Xiaoqiang Song, Lei Xu, Yan Zhao, Lei Shang, Jingsong Zhang. Preparation of carboxylmethylchitosan and alginate blend membrane for diffusion-controlled release of diclofenac diethylamine [J]. J. Mater. Sci. Technol., 2021, 63(0): 210-215. |
[10] | Jing Chen, Liang Wu, Xingxing Ding, Qiang Liu, Xu Dai, Jiangfeng Song, Bin Jiang, Andrej Atrens, Fusheng Pan. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2021, 64(0): 10-20. |
[11] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
[12] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[13] | Xuewei Yan, Qingyan Xu, Guoqiang Tian, Quanwei Liu, Junxing Hou, Baicheng Liu. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67(0): 36-49. |
[14] | Yuting Wu, Chong Li, Xingchuan Xia, Hongyan Liang, Qiqi Qi, Yongchang Liu. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'-strengthened superalloys [J]. J. Mater. Sci. Technol., 2021, 67(0): 95-104. |
[15] | Yinbao Tian, Junqi Shen, Shengsun Hu, Jian Gou, Yan Cui. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. J. Mater. Sci. Technol., 2021, 74(0): 35-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||