J. Mater. Sci. Technol. ›› 2021, Vol. 69: 129-137.DOI: 10.1016/j.jmst.2020.05.077
• Research Article • Previous Articles Next Articles
Yun-Qi Tong, Qiu-Sheng Shi, Mei-Jun Liu, Guang-Rong Li, Chang-Jiu Li, Guan-Jun Yang*()
Received:
2020-01-16
Revised:
2020-03-04
Accepted:
2020-05-27
Published:
2021-04-10
Online:
2021-05-15
Contact:
Guan-Jun Yang
About author:
*E-mail address: ygj@mail.xjtu.edu.cn (G.-J. Yang).Yun-Qi Tong, Qiu-Sheng Shi, Mei-Jun Liu, Guang-Rong Li, Chang-Jiu Li, Guan-Jun Yang. Lightweight epoxy-based abradable seal coating with high bonding strength[J]. J. Mater. Sci. Technol., 2021, 69: 129-137.
Abradable seal coating | Abradability (HR15Y) | Refs. |
---|---|---|
Epoxy-based coating | 24-43 | - |
Aluminum-based coatings | 50-82 | [ |
Nickel-based coatings | 50-70 | [ |
Ceramic-based coatings | 46-85 | [ |
Table 1 Abradability comparison between the epoxy-based coating and present coatings.
Abradable seal coating | Abradability (HR15Y) | Refs. |
---|---|---|
Epoxy-based coating | 24-43 | - |
Aluminum-based coatings | 50-82 | [ |
Nickel-based coatings | 50-70 | [ |
Ceramic-based coatings | 46-85 | [ |
Fig. 11. Tensile fracture surface SEM images of the samples with different content of HMS (a) 7.5 wt.%, (b) 16 wt.%, (c) 31 wt.%, and (d) fracture surface porosity of coatings.
Fig. 12. Tensile fracture surface of the coating with 7.5 wt.% HMS: (a) SEM enlargement image and (b) interface between the spherical shell and epoxy-resin matrix.
Fig. 13. Particle diameter differential distribution (a) and particle diameter cumulative distribution (b) of 16 wt.% HMS-epoxy sample polish section and fracture section.
[1] |
J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun, N.N. Shi, H. Zhou, X. Xiao, N. Yu, Y. Yang, Science 362 (2018) 315-318.
DOI URL |
[2] | C.Y. Li, F.X. Li, R.C. Zeng, L.Y. Cui, S.Q. Li, F. Zhang, Q.K. He, M.B. Kannan, H.W. Jiang, D.C. Chen, S.K. Guan, J. Mater. Sci. Technol. 35 (2019) 1088-1098. |
[3] |
Z. Qiao, S. Zhao, M. Sheng, J. Wang, S. Wang, Z. Wang, C. Zhong, M.D. Guiver, Nat. Mater. 18 (2019) 163-168.
DOI URL |
[4] |
M.J. Lee, S.H. Kang, J. Dey, S.M. Choi, ACS Appl. Mater. Interfaces 10 (2018) 22562-22570.
DOI URL |
[5] |
M. Boudot, C. Boissiere, E. Burov, T. Gacoin, Chem. Mater. 31 (2019) 2390-2400.
DOI URL |
[6] | S. Bassaki, H. Niazi, F. Golestani-Fard, R. Naghizadeh, R. Bayati, J. Mater. Sci. Technol. 31 (2015) 355-360. |
[7] |
Z. Han, Y. Wang, Z. Yang, M. Han, J. Mater. Sci. Technol. 32 (2016) 681-686.
DOI URL |
[8] |
J. Ziegelheim, L. Lombardi, Z. Cesanek, S. Houdkova, J. Schubert, D. Jech, L. Celko, Z. Pala, J. Therm. Spray Technol. 28 (2019) 794-802.
DOI URL |
[9] |
B. Zhang, M. Marshall, Tribol. Int. 125 (2018) 66-74.
DOI URL |
[10] |
C.U. Hardwicke, Y.C. Lau, J. Therm. Spray Technol. 22 (2013) 564-576.
DOI URL |
[11] |
E. Piollet, F. Nyssen, A. Batailly, J. Sound Vib. 460 (2019), 114878.
DOI URL |
[12] | C. Delebarre, V. Wagner, J.Y. Paris, G. Dessein, J. Denape, J. Gurt-Santanach, Wear 370 (2017) 29-38. |
[13] |
H. Chen, H. Xiang, F. Dai, J. Liu, Y. Zhou, J. Mater. Sci. Technol. 35 (2019) 2883-2891.
DOI URL |
[14] |
Z. Cheng, F. Ye, Y. Liu, T. Qiao, J. Li, H. Qin, L. Cheng, L. Zhang, J. Adv. Ceram. 8 (2019) 399-407.
DOI URL |
[15] |
M. Jalalian, Q. Jiang, A. Bismarck, ACS Appl. Polym. Mater. 1 (2019) 335-343.
DOI URL |
[16] |
C.J. Li, J. Zou, H.B. Huo, J.T. Yao, G.J. Yang, J. Therm. Spray Technol. 25 (2016) 264-272.
DOI URL |
[17] | B. Zhang, M. Marshall, Wear 426 (2019) 239-249. |
[18] |
R.E. Johnston, Surf. Coat. Technol. 205 (2011) 3268-3273.
DOI URL |
[19] |
S. Gao, W. Xue, D. Duan, S. Li, Friction 4 (2016) 176-190.
DOI URL |
[20] |
J. Liu, Y. Yu, T. Liu, X. Cheng, J. Shen, C. Li, J. Therm. Spray Technol. 26 (2017) 1095-1103.
DOI URL |
[21] |
M. Bounazef, S. Guessasma, B.A. Saadi, Mater. Lett. 58 (2004) 3375-3380.
DOI URL |
[22] |
H.I. Faraoun, T. Grosdidier, J.L. Seichepine, D. Goran, H. Aourag, C. Coddet, J. Zwick, N. Hopkins, Surf. Coat. Technol. 201 (2006) 2303-2312.
DOI URL |
[23] |
X. Ma, A. Matthews, Wear 267 (2009) 1501-1510.
DOI URL |
[24] |
B. Lei, M. Li, Z. Zhao, L. Wang, Y. Li, F. Wang, Corros. Sci. 79 (2014) 198-205.
DOI URL |
[25] | W.H. Xue, S.Y. Gao, D.L. Duan, Y. Liu, S. Li, Wear 322 (2015) 76-90. |
[26] |
N. Fois, J. Stringer, M.B. Marshall, Wear 304 (2013) 202-210.
DOI URL |
[27] |
A. Elmarakbi, P. Karagiannidis, A. Ciappa, F. Innocente, F. Galise, B. Martorana, F. Bertocchi, F. Cristiano, E. Villaro Abalos, J. Gomez, J. Mater. Sci. Technol. 35 (2019) 2169-2177.
DOI |
[28] |
Q. Wang, G. Wen, J. Chen, D.S. Su, J. Mater. Sci. Technol. 34 (2018) 2205-2211.
DOI URL |
[29] |
C. Gioia, G. Lo Re, M. Lawoko, L. Berglund, J. Am. Chem. Soc. 140 (2018) 4054-4061.
DOI URL |
[30] | Y. Cheng, B. Xia, C. Fang, L. Yang, Structure, J. Mater. Sci. Technol. 33 (2017) 1187-1194. |
[31] |
X. Yang, X. Jiang, Y. Huang, Z. Guo, L. Shao, ACS Appl. Mater. Interfaces 9 (2017) 5590-5599.
DOI URL |
[32] |
C.M. Sahagun, S.E. Morgan, ACS Appl. Mater. Interfaces 4 (2012) 564-572.
DOI URL |
[33] |
A. Wooten, P.J. Carroll, A.G. Maestri, P.J. Walsh, J. Am. Chem. Soc. 128 (2006) 4624-4631.
DOI URL |
[34] |
H.D. Wu, P.P. Chu, C.C.M. Ma, F.C. Chang, Macromolecules 32 (1999) 3097-3105.
DOI URL |
[35] |
Z.L. Yu, Z.Y. Wu, S. Xin, C. Qiao, Z.Y. Yu, H.P. Cong, S.H. Yu, Chem. Mater. 26 (2014) 6915-6918.
DOI URL |
[36] |
X. Ma, A. Matthews, Surf. Coat. Technol. 202 (2007) 1214-1220.
DOI URL |
[37] | K. Hajmrle, P. Fiala, A.P. Chilkowich, L.T. Shiembob, P. ASME Turbo Expo 2004 (2004) 673-682. |
[38] | W. Xue, S. Gao, D. Duan, J. Zhang, Y. Liu, S. Li, Wear 410 (2018) 25-33. |
[39] |
W. Xue, S. Gao, D. Duan, J. Zhang, Y. Liu, S. Li, J. Therm. Spray Technol. 26 (2017) 539-553.
DOI URL |
[40] | W. Xue, S. Gao, D. Duan, L. Wang, Y. Liu, S. Li, J. Tribol. 139 (2017) 021604. |
[41] |
X. Ma, A. Matthews, Surf. Coat. Technol. 202 (2007) 1214-1220.
DOI URL |
[42] |
Z. Wang, L. Du, H. Lan, C. Huang, W. Zhang, Ceram. Int. 45 (2019) 11802-11811.
DOI |
[43] |
U. Bardi, C. Giolli, A. Scrivani, G. Rizzi, F. Borgioli, A. Fossati, K. Partes, T. Seefeld, D. Sporer, A. Refke, J. Therm. Spray Technol. 17 (2008) 805-811.
DOI URL |
[44] |
Z. Wang, L. Du, H. Lan, C. Huang, W. Zhang, Mater. Lett. 253 (2019) 226-229.
DOI |
[45] |
R.E. Johnston, W.J. Evans, Surf. Coat. Technol. 202 (2007) 725-729.
DOI URL |
[46] |
K. Kapat, P.K. Srivas, A.P. Rameshbabu, P.P. Maity, S. Jana, J. Dutta, P. Majumdar, D. Chakrabarti, S. Dhara, ACS Appl. Mater. Interfaces 9 (2017) 39235-39248.
DOI URL |
[47] |
S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, S. Viswanathan, Nature 415 (2002), 817-817.
DOI URL |
[48] |
Y. Yang, H. Wang, F.Y. Yan, Y. Qi, Y.K. Lai, D.M. Zeng, G. Chen, K.Q. Zhang, ACS Appl. Mater. Interfaces 7 (2015) 5634-5642.
DOI URL |
[49] |
T. Wu, L. Sun, F. Xu, D. Cai, J. Mater. Sci. Technol. 34 (2018) 2384-2391.
DOI URL |
[50] |
E.F. Krivoshapkina, P.V. Krivoshapkin, A.A. Vedyagin, J. Adv. Ceram. 6 (2017) 11-19.
DOI URL |
[51] |
B. Chen, K.Y. Yin, T.F. Lu, B.Y. Sun, Q. Dong, J.X. Zheng, C. Lu, Z.C. Li, J. Mater. Sci. Technol. 32 (2016) 858-864.
DOI URL |
[52] |
S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, J. Han, ACS Appl. Mater. Interfaces 5 (2013) 11074-11079.
DOI URL |
[53] |
M.F. Ashby, Metall. Mater. Trans. A 14 (1983) 1755-1769.
DOI URL |
[54] |
J. Seuba, S. Deville, C. Guizard, A.J. Stevenson, Sci. Rep. 6 (2016) 24326.
DOI URL |
[55] |
E. Irissou, A. Dadouche, R.S. Lima, J. Therm, Spray Technol. 23 (2014) 252-261.
DOI URL |
[56] | Z. Mutasim, L. Hsu, E. Wong, Surf. Coat. Technol. 54 (1992) 39-44. |
[57] | Y. Cao, W. Liu, L. Du, C. Huang, W. Zhang, Rare Metal Mater. Eng. 41 (2012) 813-816. |
[58] | N. Fois, M. Watson, M.B. Marshall, Proc. Inst. Mech. Eng. Part J.-J.Eng. Tribol. 231 (2017) 240-253. |
[1] | Liyuan Han, Qiang Song, Kezhi Li, Xuemin Yin, Jiajia Sun, Hejun Li, Fengpei Zhang, Xinran Ren, Xi Wang. Hierarchical, seamless, edge-rich nanocarbon hybrid foams for highly efficient electromagnetic-interference shielding [J]. J. Mater. Sci. Technol., 2021, 72(0): 154-161. |
[2] | Mengdan Hu, Taotao Wang, Hui Fang, Mingfang Zhu. Modeling of gas porosity and microstructure formation during dendritic and eutectic solidification of ternary Al-Si-Mg alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 76-85. |
[3] | Alejandra Rodriguez-Contreras, Miquel Punset, José A. Calero, Francisco JavierGil, Elisa Ruperez, José María Manero. Powder metallurgy with space holder for porous titanium implants: A review [J]. J. Mater. Sci. Technol., 2021, 76(0): 129-149. |
[4] | Yeshun Huang, Xinguang Wang, Chuanyong Cui, Zihao Tan, Jinguo Li, Yanhong Yang, Jinlai Liu, Yizhou Zhou, Xiaofeng Sun. Effect of thermal exposure on the microstructure and creep properties of a fourth-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 180-187. |
[5] | Cheng Gu, Colin D. Ridgeway, Emre Cinkilic, Yan Lu, Alan A. Luo. Predicting gas and shrinkage porosity in solidification microstructure: A coupled three-dimensional cellular automaton model [J]. J. Mater. Sci. Technol., 2020, 49(0): 91-105. |
[6] | Paulina Kazimierczak, Aleksandra Benko, Krzysztof Palka, Cristina Canal, Dorota Kolodynska, Agata Przekora. Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaffolds [J]. J. Mater. Sci. Technol., 2020, 43(0): 52-63. |
[7] | D.P. Opra, S.V. Gnedenkov, A.A. Sokolov, A.B. Podgorbunsky, A.Yu. Ustinov, V.Yu. Mayorov, V.G. Kuryavyi, S.L. Sinebryukhov. Vanadium-doped TiO2-B/anatase mesoporous nanotubes with improved rate and cycle performance for rechargeable lithium and sodium batteries [J]. J. Mater. Sci. Technol., 2020, 54(0): 181-189. |
[8] | F.H. Kuang, S.M. Wang, C. Gao, H.B. Zhang, R.K. Ren, J.L. Ren, J. Tong, Y.M. Liu, J. Liu. Unique microstructure and thermal insulation property of a novel waste-utilized foam ceramic [J]. J. Mater. Sci. Technol., 2020, 48(0): 175-179. |
[9] | B. Zhou, D. Wu, R.S. Chen, En-hou Han. Enhanced tensile properties in a Mg-6Gd-3Y-0.5Zr alloy due to hot isostatic pressing (HIP) [J]. J. Mater. Sci. Technol., 2019, 35(9): 1860-1868. |
[10] | Heng Chen, Huimin Xiang, Fu-Zhi Dai, Jiachen Liu, Yiming Lei, Jie Zhang, Yanchun Zhou. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C [J]. J. Mater. Sci. Technol., 2019, 35(8): 1700-1705. |
[11] | X.Y. Jiao, J. Wang, C.F. Liu, Z.P. Guo, G.D. Tong, S.L. Ma, Y. Bi, Y.F. Zhang, S.M. Xiong. Characterization of high-pressure die-cast hypereutectic Al-Si alloys based on microstructural distribution and fracture morphology [J]. J. Mater. Sci. Technol., 2019, 35(6): 1099-1107. |
[12] | Fariborz Tavangarian, Abbas Fahami, Guoqiang Li, Mohammadhassan Kazemi, Anoosha Forghani. Structural characterization and strengthening mechanism of forsterite nanostructured scaffolds synthesized by multistep sintering method [J]. J. Mater. Sci. Technol., 2018, 34(12): 2263-2270. |
[13] | Wei Kai, Kim Kyu-Oh, Song Kyung-Hun, Kang Chang-Yong, Soon Lee Jung, Gopiraman Mayakrishnan, Kim Ick-Soo. Nitrogen- and Oxygen-Containing Porous Ultrafine Carbon Nanofiber: A Highly Flexible Electrode Material for Supercapacitor [J]. J. Mater. Sci. Technol., 2017, 33(5): 424-431. |
[14] | Wu Jie,Guo Ruipeng,Xu Lei,Lu Zhengguan,Cui Yuyou,Yang Rui. Effect of Hot Isostatic Pressing Loading Route on Microstructure and Mechanical Properties of Powder Metallurgy Ti2AlNb Alloys [J]. J. Mater. Sci. Technol., 2017, 33(2): 172-178. |
[15] | Wang Guanglei, Sun Yuan, Wang Xinguang, Liu Jide, Liu Jinlai, Li Jinguo, Yu Jinjiang, Zhou Yizhou, Jin Tao, Sun Xudong, Sun Xiaofeng. Microstructure evolution and mechanical behavior of Ni-based single crystal superalloy joint brazed with mixed powder at elevated temperature [J]. J. Mater. Sci. Technol., 2017, 33(10): 1219-1226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||