J. Mater. Sci. Technol. ›› 2021, Vol. 84: 27-42.DOI: 10.1016/j.jmst.2020.12.047
• Research Article • Previous Articles Next Articles
Jie Wanga,b, Gaoming Zhua, Leyun Wanga,e,**(), Evgenii Vasilevb, Jun-Sang Parkc, Gang Shad, Xiaoqin Zenga,e,**(
), Marko Knezevicb,*(
)
Received:
2020-10-07
Revised:
2020-12-12
Accepted:
2020-12-24
Published:
2021-09-10
Online:
2021-02-01
Contact:
Leyun Wang,Xiaoqin Zeng,Marko Knezevic
About author:
* E-mail addresses: marko.knezevic@unh.edu (M. Knezevic).Jie Wang, Gaoming Zhu, Leyun Wang, Evgenii Vasilev, Jun-Sang Park, Gang Sha, Xiaoqin Zeng, Marko Knezevic. Origins of high ductility exhibited by an extruded magnesium alloy Mg-1.8Zn-0.2Ca: Experiments and crystal plasticity modeling[J]. J. Mater. Sci. Technol., 2021, 84: 27-42.
Fig. 1. Optical micrographs showing the initial microstructures of the two designed Mg-Zn-Ca alloys: (a, b) as-cast, (c,d) as-extruded. (e,f) the grain size distribution of the extruded alloys.
Fig. 2. Three-dimensional APT reconstruction of the extruded ZX20 local structure containing a grain boundary. (a) Mg atom density maps for the APT analysis volume calculated for different sections, showing two different poles, with grain boundary indicated by dotted lines. (b) Distributions of Mg, Zn, and Ca atoms in the sample. (c,d) Solute concentration profiles normal to the grain boundary from the APT analysis volume shown in (b).
Fig. 3. Inverse pole figure (IPF) maps and pole figures (PF) of (a) ZX20, (b) ZX10, and (c) pure Mg. The colors in the IPF maps represent the grain orientations with respect to the TD.
Fig. 4. (a) Tensile stress-strain curves along ED of ZX20, ZX10, and pure Mg. (b) Comparison of mechanical properties for the most commonly studied Mg alloys in Refs. [4,[7], [8], [9],11,[13], [14], [15],[27], [28], [29],35,46,75]. Mg-Zn-Ca ternary alloys are included in the Mg-Zn based alloys in Fig. 4(b).
Fig. 5. (a) An EBSD map of ZX20 at 4% of tensile strain, showing absence of deformation twinning activity for majority of the grains. The grain orientations are represented by hexagonal unit cells. (b) Secondary electron image of the same area as in (a), showing the slip lines developed on the surface of the sample after 4% of tensile strain. (c) A selected grain developing prismatic slip lines after 8% of tensile strain.
Fig. 6. Distribution of grain orientation rotation with respect to the grain size measured for: (a) 798 grains from 0% to 1% strain, (b) 749 grains from 1% to 2% strain, (c) 746 grains from 2% to 4% strain in ZX20 alloy during tension test. (d) Average amount of grain rotation and the c-axis tilt associated with the grain rotation as a function of engineering strain for ZX20 alloy.
Fig. 8. (a, b) Evolution of FWHM of different diffraction peaks as a function of engineering strain during tensile deformation. (c, d) W-H slope and y-intercept as a function of engineering strain for ZX10 and ZX20 alloys.
Fig. 9. Comparison of the experimental and simulated true stress-strain responses in simple tension and compression along with the directions as indicated in the figures along with predicted relative activities of each deformation mode.
Parameter | Mg-0.9 wt.%Zn-0.1 wt.%Ca (ZX10) (Meff = 0.2) | Mg-1.8 wt.%Zn-0.2 wt.%Ca (ZX20) (Meff = 0.4) | ||||
---|---|---|---|---|---|---|
<a> prism | <a> basal | <c+a> pyr I | <a> prism | <a> basal | <c+a> pyr I | |
$\tau _{0}^{\text{ }\!\!\alpha\!\!\text{ }}(\text{MPa})$ | 36 | 9 | 85 | 35 | 15 | 230 |
$k_{1}^{\text{ }\!\!\alpha\!\!\text{ }}({{\text{m}}^{-1}})$ | 3.5 × 108 | 0.5 × 108 | 5.5 × 108 | 2.7 × 108 | 0.9 × 108 | 5.5 × 108 |
${{D}^{\text{ }\!\!\alpha\!\!\text{ }}}(\text{MPa})$ | 50 | 50 | 50 | 50 | 50 | 50 |
${{g}^{\alpha }}$ | 2.5 × 10-3 | 2.5 × 10-3 | 3.0 × 10-3 | 2.7 × 10-3 | 9.0 × 10-3 | 3.5 × 10-3 |
${{q}^{\alpha }}$ | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
$H{{P}^{\alpha }}$ | 0.15 | 0.09 | 0.02 | 0.16 | 0.1 | 0.03 |
Table 1a. Hardening parameters for slip systems.
Parameter | Mg-0.9 wt.%Zn-0.1 wt.%Ca (ZX10) (Meff = 0.2) | Mg-1.8 wt.%Zn-0.2 wt.%Ca (ZX20) (Meff = 0.4) | ||||
---|---|---|---|---|---|---|
<a> prism | <a> basal | <c+a> pyr I | <a> prism | <a> basal | <c+a> pyr I | |
$\tau _{0}^{\text{ }\!\!\alpha\!\!\text{ }}(\text{MPa})$ | 36 | 9 | 85 | 35 | 15 | 230 |
$k_{1}^{\text{ }\!\!\alpha\!\!\text{ }}({{\text{m}}^{-1}})$ | 3.5 × 108 | 0.5 × 108 | 5.5 × 108 | 2.7 × 108 | 0.9 × 108 | 5.5 × 108 |
${{D}^{\text{ }\!\!\alpha\!\!\text{ }}}(\text{MPa})$ | 50 | 50 | 50 | 50 | 50 | 50 |
${{g}^{\alpha }}$ | 2.5 × 10-3 | 2.5 × 10-3 | 3.0 × 10-3 | 2.7 × 10-3 | 9.0 × 10-3 | 3.5 × 10-3 |
${{q}^{\alpha }}$ | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
$H{{P}^{\alpha }}$ | 0.15 | 0.09 | 0.02 | 0.16 | 0.1 | 0.03 |
Parameter | Mg-0.9 wt.%Zn-0.1 wt.%Ca (ZX10) | Mg-1.8 wt.%Zn-0.2 wt.%Ca (ZX20) |
---|---|---|
$\tau _{0}^{\text{ }\!\!\beta\!\!\text{ }}(\text{MPa})$ | 18 | 21 |
$\text{H}{{\text{P}}^{\text{ }\!\!\beta\!\!\text{ }}}(\text{MPa})\sqrt{m}$ | 0.09 | 0.09 |
${{C}^{\text{ }\!\!\beta\!\!\text{ }}}$ | 50 | 50 |
Table 1b. Hardening parameters for twinning.
Parameter | Mg-0.9 wt.%Zn-0.1 wt.%Ca (ZX10) | Mg-1.8 wt.%Zn-0.2 wt.%Ca (ZX20) |
---|---|---|
$\tau _{0}^{\text{ }\!\!\beta\!\!\text{ }}(\text{MPa})$ | 18 | 21 |
$\text{H}{{\text{P}}^{\text{ }\!\!\beta\!\!\text{ }}}(\text{MPa})\sqrt{m}$ | 0.09 | 0.09 |
${{C}^{\text{ }\!\!\beta\!\!\text{ }}}$ | 50 | 50 |
Fig. 10. Stereographic pole figures showing a comparison of the measured and predicted texture evolution of ZX20 alloy deformed in simple tension along with ED to certain strain levels.
Fig. 12. (a) Secondary electron images of a selected area of ZX20 tensile specimen at different strains. (b) Image quality of ZX20 alloy showing the grain structure prior to deformation. (c) A magnified secondary electron image of ZX20 alloy at 32% tensile of strain. Dashed rectangles in both (b) and (c) show a same area as in (a).
Fig. 13. (a) A HAADF-STEM image showing the microstructure of ZX20 alloy after tensile fracture, the fast Fourier transformation (FFT) patterns obtained from the grain interior and grain boundary are presented (marked as red square and light blue square, respectively). (b) Elemental maps of Mg, Zn, and Ca obtained from the observation region containing a grain boundary as showed in (a).
Fig. A1. (a) A 2D diffraction pattern obtained from the extruded ZX20 sample on the GE3 detector prior to deformation. The solid line in the pattern mark the azimuthal range for integration, and the dotted line shows the projection of the loading direction onto the detector plane. (b) Integrated diffraction profiles of ZX20 alloy along axial and transverse directions. Only Mg peaks were identified from the 1D XRD result.
Fig. A2. Inverse pole figures (IPF) showing a comparison of measured and predicted texture evolution of ZX20 alloy at different tensile strains, the IPFs are along extrusion direction.
[1] |
T.M. Pollock, Science 328 (2010) 986-987.
DOI PMID |
[2] |
J. Wang, J. Zhang, X. Zong, C. Xu, Z. You, K. Nie, Mater. Sci. Eng. A 648 (2015) 37-40.
DOI URL |
[3] |
M. Lentz, M. Risse, N. Schaefer, W. Reimers, I.J. Beyerlein, Nat. Commun. 7 (2016) 11068.
DOI PMID |
[4] |
T.T.T. Trang, J.H. Zhang, J.H. Kim, A. Zargaran, J.H. Hwang, B.-C. Suh, N.J. Kim, Nat. Commun. 9 (2018) 2522.
DOI PMID |
[5] |
B.-C. Suh, M.-S. Shim, K.S. Shin, N.J. Kim, Scr. Mater. 84-85 (2014) 1-6.
DOI URL |
[6] |
Z. Zeng, J.-F. Nie, S.-W. Xu, C.H.J. Davies, N. Birbilis, Nat. Commun. 8 (2017) 972.
DOI URL |
[7] |
S. Sandlöbes, M. Friák, S. Korte-Kerzel, Z. Pei, J. Neugebauer, D. Raabe, Sci. Rep. 7 (2017) 10458.
DOI PMID |
[8] |
B.-C. Suh, J.H. Kim, J.H. Bae, J.H. Hwang, M.-S. Shim, N.J. Kim, Acta Mater. 124 (2017) 268-279.
DOI URL |
[9] |
G. Zhu, L. Wang, J. Wang, J. Wang, J.-S. Park, X. Zeng, Acta Mater. 200 (2020) 236-245.
DOI URL |
[10] |
Q. Dong, Z. Luo, H. Zhu, L. Wang, T. Ying, Z. Jin, D. Li, W. Ding, X. Zeng, J. Mater. Sci. Technol. 34 (2018) 1773-1780.
DOI |
[11] |
A. Imandoust, C.D. Barrett, T. Al-Samman, K.A. Inal, H. El Kadiri, J. Mater. Sci. 52 (2017) 1-29.
DOI URL |
[12] | R.K. Mishra, A.K. Gupta, P.R. Rao, A.K. Sachdev, A.M. Kumar, A.A. Luo, S.N. Mathaudhu, A.A. Luo, N.R. Neelameggham, E.A. Nyberg, W.H. Sillekens Springer International Publishing, Cham, 2016, pp. 363-368. |
[13] |
S. Sandlöbes, Z. Pei, M. Friák, L.-F. Zhu, F. Wang, S. Zaefferer, D. Raabe, J. Neugebauer, Acta Mater. 70 (2014) 92-104.
DOI URL |
[14] |
L. Wang, Z. Huang, H. Wang, A. Maldar, S. Yi, J.-S. Park, P. Kenesei, E. Lilleodden, X. Zeng, Acta Mater. 155 (2018) 138-152.
DOI URL |
[15] |
A. Kula, X. Jia, R.K. Mishra, M. Niewczas, Metall. Mater. Trans. B 47 (2016) 3333-3342.
DOI URL |
[16] | W. Li, L. Wang, B. Zhou, C. Liu, X. Zeng, J. Mater. Sci. Technol. 35 (2019) 2200-2206. |
[17] |
A. Maldar, L. Wang, G. Zhu, X. Zeng, J. Magnes. Alloy 8 (2020) 210-218.
DOI URL |
[18] |
D. Guan, X. Liu, J. Gao, L. Ma, B.P. Wynne, W.M. Rainforth, Sci. Rep. 9 (2019) 7152.
DOI URL |
[19] |
D. Guan, W.M. Rainforth, J. Gao, L. Ma, B. Wynne, Acta Mater. 145 (2018) 399-412.
DOI URL |
[20] |
T. Tsuru, D.C. Chrzan, Sci. Rep. 5 (2015) 8793.
DOI PMID |
[21] |
A. Tehranchi, B. Yin, W.A. Curtin, Acta Mater. 151 (2018) 56-66.
DOI URL |
[22] | Z. Wu, R. Ahmad, B. Yin, S. Sandlöbes, W.A. Curtin, Science 359 (2018) 447-452. |
[23] |
S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, R. Gonzalez-Martinez, Acta Mater. 59 (2011) 429-439.
DOI URL |
[24] |
Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, J.F. Nie, Acta Mater. 105 (2016) 479-494.
DOI URL |
[25] |
D. Guan, X. Liu, J. Gao, L. Ma, B. Wynne, W.M. Rainforth, J. Alloys. Compd. 774 (2019) 556-564.
DOI URL |
[26] |
L. Geng, B.P. Zhang, A.B. Li, C.C. Dong, Mater. Lett. 63 (2009) 557-559.
DOI URL |
[27] |
Z.R. Zeng, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis, J.F. Nie, Mater. Sci. Eng. A 674 (2016) 459-471.
DOI URL |
[28] |
S.W. Xu, K. Oh-ishi, H. Sunohara, S. Kamado, Mater. Sci. Eng. A 558 (2012) 356-365.
DOI URL |
[29] |
L.B. Tong, M.Y. Zheng, L.R. Cheng, S. Kamado, H.J. Zhang, Mater. Sci. Eng. A 569 (2013) 48-53.
DOI URL |
[30] |
J. Hofstetter, S. Rüedi, I. Baumgartner, H. Kilian, B. Mingler, E. Povoden-Karadeniz, S. Pogatscher, P.J. Uggowitzer, J.F. Löffler, Acta Mater. 98 (2015) 423-432.
DOI URL |
[31] |
M.G. Jiang, C. Xu, T. Nakata, H. Yan, R.S. Chen, S. Kamado, J. Alloys. Compd. 668 (2016) 13-21.
DOI URL |
[32] |
H. Pan, Y. Ren, H. Fu, H. Zhao, L. Wang, X. Meng, G. Qin, J. Alloys. Compd. 663 (2016) 321-331.
DOI URL |
[33] | A.H. Blake, C.H. Cáceres, Mater. Sci. Eng.A 483-484 (2008) 161-163. |
[34] |
H.-S. Jang, B.-J. Lee, Scr. Mater. 160 (2019) 39-43.
DOI URL |
[35] |
G. Zhu, L. Wang, H. Zhou, J. Wang, Y. Shen, P. Tu, H. Zhu, W. Liu, P. Jin, X. Zeng, Int. J. Plast. 120 (2019) 164-179.
DOI URL |
[36] |
J.A. Yasi, L.G. Hector, D.R. Trinkle, Acta Mater. 58 (2010) 5704-5713.
DOI URL |
[37] |
J.A. Yasi, L.G. Hector, D.R. Trinkle, Acta Mater. 60 (2012) 2350-2358.
DOI URL |
[38] |
K.-H. Kim, J.H. Hwang, H.-S. Jang, J.B. Jeon, N.J. Kim, B.-J. Lee, Mater. Sci. Eng. A 715 (2018) 266-275.
DOI URL |
[39] |
C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, M.T. Pérez-Prado, JOM 68 (2016) 116-126.
DOI URL |
[40] |
N. Jia, Z.H. Cong, X. Sun, S. Cheng, Z.H. Nie, Y. Ren, P.K. Liaw, Y.D. Wang, Acta Mater. 57 (2009) 3965-3977.
DOI URL |
[41] |
D. Zhang, L. Wang, H. Zhang, A. Maldar, G. Zhu, W. Chen, J.-S. Park, J. Wang, X. Zeng, Acta Mater. 189 (2020) 93-104.
DOI URL |
[42] |
L. Wang, M. Li, J. Almer, Acta Mater. 62 (2014) 239-249.
DOI URL |
[43] |
M. Lentz, M. Klaus, I.J. Beyerlein, M. Zecevic, W. Reimers, M. Knezevic, Acta Mater. 86 (2015) 254-268.
DOI URL |
[44] |
F. Zhang, L.E. Levine, A.J. Allen, M.R. Stoudt, G. Lindwall, E.A. Lass, M.E. Williams, Y. Idell, C.E. Campbell, Acta Mater. 152 (2018) 200-214.
DOI URL |
[45] |
K. Sofinowski, M. Šmíd, S. van Petegem, S. Rahimi, T. Connolley, H. van Swygenhoven, Acta Mater. 181 (2019) 87-98.
DOI |
[46] | J. Wang, L. Wang, G. Zhu, B. Zhou, T. Ying, X. Zhang, Q. Huang, Y. Shen, X. Zeng, H. Jiang, Metall. Mater. Trans. A Phys.Metall. Mater. Sci. 49 (2018) 5382-5392. |
[47] |
P.R. Dawson, D.E. Boyce, J.-S. Park, E. Wielewski, M.P. Miller, Acta Mater. 144 (2018) 92-106.
DOI URL |
[48] |
E. Wielewski, D.E. Boyce, J.-S. Park, M.P. Miller, P.R. Dawson, Acta Mater. 126 (2017) 469-480.
DOI URL |
[49] |
Z. Zeng, N. Stanford, C.H.J. Davies, J.-F. Nie, N. Birbilis, Int. Mater. Rev. 64 (2019) 27-62.
DOI URL |
[50] |
J.-S. Park, X. Zhang, H. Sharma, P. Kenesei, D. Hoelzer, M. Li, J. Almer, J. Mater. Res. 30 (2015) 1380-1391.
DOI URL |
[51] |
D.J. Savage, I.J. Beyerlein, N.A. Mara, S.C. Vogel, R.J. McCabe, M. Knezevic, Int. J. Plast. 125 (2020) 1-26.
DOI URL |
[52] |
C.N. Tomé, Model. Simul. Mater. Sci. Eng. 7 (1999) 723-738.
DOI URL |
[53] |
T.J. Barrett, R.J. McCabe, D.W. Brown, B. Clausen, S.C. Vogel, M. Knezevic, J. Mech. Phys. Solids 138 (2020), 103924.
DOI URL |
[54] |
I.J. Beyerlein, C.N. Tomé, Int. J. Plast. 24 (2008) 867-895.
DOI URL |
[55] |
M. Ardeljan, I.J. Beyerlein, M. Knezevic, J. Mech. Phys. Solids 66 (2014) 16-31.
DOI URL |
[56] |
M. Ardeljan, M. Knezevic, T. Nizolek, I.J. Beyerlein, N.A. Mara, T.M. Pollock, Int. J. Plast. 74 (2015) 35-57.
DOI URL |
[57] |
M. Ardeljan, D.J. Savage, A. Kumar, I.J. Beyerlein, M. Knezevic, Acta Mater. 115 (2016) 189-203.
DOI URL |
[58] |
A. Eghtesad, M. Knezevic, J. Mech. Phys. Solids 134 (2020), 103750.
DOI URL |
[59] |
M. Knezevic, M. Zecevic, I.J. Beyerlein, J.F. Bingert, R.J. McCabe, Acta Mater. 88 (2015) 55-73.
DOI URL |
[60] |
M. Knezevic, M. Zecevic, I.J. Beyerlein, R.A. Lebensohn, Comput. Methods Appl. Mech. Eng. 308 (2016) 468-482.
DOI URL |
[61] |
M. Zecevic, M. Knezevic, Comput. Methods Appl. Mech. Eng. 341 (2018) 888-916.
DOI URL |
[62] |
M. Zecevic, Y.P. Korkolis, T. Kuwabara, M. Knezevic, J. Mech. Phys. Solids 96 (2016) 65-87.
DOI URL |
[63] |
M. Zecevic, M.V. Upadhyay, E. Polatidis, T. Panzner, H. Van Swygenhoven, M. Knezevic, Acta Mater. 166 (2019) 386-401.
DOI URL |
[64] |
F.F. Lavrentev, Mater. Sci. Eng. 46 (1980) 191-208.
DOI URL |
[65] |
M. Khadyko, S. Dumoulin, G. Cailletaud, O.S. Hopperstad, Int. J. Plast. 76 (2016) 51-74.
DOI URL |
[66] |
K. Kitayama, C.N. Tomé, E.F. Rauch, J.J. Gracio, F. Barlat, Int. J. Plast. 46 (2013) 54-69.
DOI URL |
[67] |
H. Mecking, U.F. Kocks, Acta Metall. 29 (1981) 1865-1875.
DOI URL |
[68] |
W. Wen, M. Borodachenkova, C.N. Tomé, G. Vincze, E.F. Rauch, F. Barlat, J.J. Grácio, Int. J. Plast. 73 (2015) 171-183.
DOI URL |
[69] |
G. Proust, C.N. Tomé, G.C. Kaschner, Acta Mater. 55 (2007) 2137-2148.
DOI URL |
[70] |
M. Knezevic, M.R. Daymond, I.J. Beyerlein, Scr. Mater. 121 (2016) 84-88.
DOI URL |
[71] |
M. Knezevic, R.A. Lebensohn, O. Cazacu, B. Revil-Baudard, G. Proust, S.C. Vogel, M.E. Nixon, Mater. Sci. Eng. A 564 (2013) 116-126.
DOI URL |
[72] |
M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, S.R. Kalidindi, Acta Mater. 58 (2010) 6230-6242.
DOI URL |
[73] |
P.V. Houtte, Acta Metall. 26 (1978) 591-604.
DOI URL |
[74] |
A.H. Cottrell, B.A. Bilby, Proc. Phys. Soc. Sect. A 62 (1949) 49-62.
DOI URL |
[75] |
R.K. Sabat, A.P. Brahme, R.K. Mishra, K. Inal, S. Suwas, Acta Mater. 161 (2018) 246-257.
DOI URL |
[76] | M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials, Cambridge University Press, 2008. |
[77] |
L. Margulies, G. Winther, H.F. Poulsen, Science 291 (2001) 2392, LP - 2394.
PMID |
[78] |
Y.D. Wang, X.-L. Wang, A.D. Stoica, J.W. Richardson, R. Lin Peng, J. Appl. Crystallogr. 36 (2003) 14-22.
DOI URL |
[79] |
J.V. Bernier, J.-S. Park, A.L. Pilchak, M.G. Glavicic, M.P. Miller, Metall. Mater. Trans. A 39 (2008) 3120-3133.
DOI URL |
[80] |
P. Scardi, M. Leoni, R. Delhez, J. Appl. Crystallogr. 37 (2004) 381-390.
DOI URL |
[81] |
V. Soleimanian, S.R. Aghdaee, Powder Diffr. 23 (2008) 41-51.
DOI URL |
[82] |
D. Balzar, N. Audebrand, M.R. Daymond, A. Fitch, A. Hewat, J.I. Langford, A. Le Bail, D. Louër, O. Masson, C.N. McCowan, J. Appl. Crystallogr. 37 (2004) 911-924.
DOI URL |
[83] |
T. Ungár, A. Borbély, Appl. Phys. Lett. 69 (1996) 3173-3175.
DOI URL |
[84] |
M.Z. Bian, T.T. Sasaki, T. Nakata, Y. Yoshida, N. Kawabe, S. Kamado, K. Hono, Acta Mater. 158 (2018) 278-288.
DOI URL |
[85] |
A. Akhtar, E. Teghtsoonian, Acta Metall. 17 (1969) 1351-1356.
DOI URL |
[86] |
N. Stanford, M.R. Barnett, Int. J. Plast. 47 (2013) 165-181.
DOI URL |
[87] |
B. Song, Q. Yang, T. Zhou, L. Chai, N. Guo, T. Liu, S. Guo, R. Xin, J. Mater. Sci. Technol. 35 (2019) 2269-2282.
DOI |
[88] | H. Somekawa, D.A. Basha, A. Singh, T. Tsuru, M. Yamaguchi, Mater. Trans. (2020), MT-M2020040. |
[89] |
H. Somekawa, D.A. Basha, A. Singh, Materialia 8 (2019) 100466.
DOI URL |
[90] |
W.T. Sun, X.G. Qiao, M.Y. Zheng, C. Xu, S. Kamado, X.J. Zhao, H.W. Chen, N. Gao, M.J. Starink, Acta Mater. 151 (2018) 260-270.
DOI URL |
[91] |
J. Hu, Y.N. Shi, X. Sauvage, G. Sha, K. Lu, Science 355 (2017) 1292-1296.
DOI |
[1] | Jing Li, Mengjie Zhao, Li Jin, Fenghua Wang, Shuai Dong, Jie Dong. Simultaneously improving strength and ductility through laminate structure design in Mg-8.0Gd-3.0Y-0.5Zr alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 195-200. |
[2] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[3] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
[4] | Yongliang Qi, Tinghui Cao, Hongxiang Zong, Yake Wu, Lin He, Xiangdong Ding, Feng Jiang, Shenbao Jin, Gang Sha, Jun Sun. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping [J]. J. Mater. Sci. Technol., 2021, 75(0): 154-163. |
[5] | Zhong-Zheng Jin, Min Zha, Hai-Long Jia, Pin-Kui Ma, Si-Qing Wang, Jia-Wei Liang, Hui-Yuan Wang. Balancing the strength and ductility of Mg-6Zn-0.2Ca alloy via sub-rapid solidification combined with hard-plate rolling [J]. J. Mater. Sci. Technol., 2021, 81(0): 219-228. |
[6] | Kaisheng Ming, Shuimiao Jiang, Xiaoyuan Niu, Bo Li, Xiaofang Bi, Shijian Zheng. High-temperature strength-coercivity balance in a FeCo-based soft magnetic alloy via magnetic nanoprecipitates [J]. J. Mater. Sci. Technol., 2021, 81(0): 36-42. |
[7] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[8] | Bingnan Qian, Jinyong Zhang, Yangyang Fu, Fan Sun, Yuan Wu, Jun Cheng, Philippe Vermaut, Frédéric Prima. In-situ microstructural investigations of the TRIP-to-TWIP evolution in Ti-Mo-Zr alloys as a function of Zr concentration [J]. J. Mater. Sci. Technol., 2021, 65(0): 228-237. |
[9] | Xiao-Yuan Wang, Yu-Fei Wang, Cheng Wang, Shun Xu, Jian Rong, Zhi-Zheng Yang, Jin-Guo Wang, Hui-Yuan Wang. A simultaneous improvement of both strength and ductility by Sn addition in as-extruded Mg-6Al-4Zn alloy [J]. J. Mater. Sci. Technol., 2020, 49(0): 117-125. |
[10] | Mohammad Nasim, Yuncang Li, Ming Wen, Cuie Wen. A review of high-strength nanolaminates and evaluation of their properties [J]. J. Mater. Sci. Technol., 2020, 50(0): 215-244. |
[11] | Xiaoxiao Wei, Li Jin, Fenghua Wang, Jing Li, Nan Ye, Zhenyan Zhang, Jie Dong. High strength and ductility Mg-8Gd-3Y-0.5Zr alloy with bimodal structure and nano-precipitates [J]. J. Mater. Sci. Technol., 2020, 44(0): 19-23. |
[12] | Ran Wei, Kaisheng Zhang, Liangbin Chen, Zhenhua Han, Chen Chen, Tan Wang, Jianzhong Jiang, Tingwei Hu, Shaokang Guan, Fushan Li. Toughening FeMn-based high-entropy alloys via retarding phase transformation [J]. J. Mater. Sci. Technol., 2020, 51(0): 167-172. |
[13] | Hao Jin, Qing Jia, Quangang Xian, Ronghua Liu, Yuyou Cui, Dongsheng Xu, Rui Yang. Seeded growth of Ti-46Al-8Nb polysynthetically twinned crystals with an ultra-high elongation [J]. J. Mater. Sci. Technol., 2020, 54(0): 190-195. |
[14] | Chaoyu Han, Shibo Wen, Feng Ye, Wenjia Wu, Shaowei Xue, Yongfeng Liang, Binbin Liu, Junpin Lin. Deformation twinning in equiaxed-grained Fe-6.5 wt.%Si alloy after rotary swaging [J]. J. Mater. Sci. Technol., 2020, 49(0): 25-34. |
[15] | Y.Z. Zhang, J.J. Wang, N.R. Tao. Tensile ductility and deformation mechanisms of a nanotwinned 316L austenitic stainless steel [J]. J. Mater. Sci. Technol., 2020, 36(0): 65-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||