J. Mater. Sci. Technol. ›› 2021, Vol. 84: 43-48.DOI: 10.1016/j.jmst.2020.12.044
• Research Article • Previous Articles Next Articles
Huanhuan Lua, Zhangjie Wanga,*(), Di Yunb, Ju Lic,*(
), Zhiwei Shana,*(
)
Received:
2020-09-11
Revised:
2020-12-07
Accepted:
2020-12-13
Published:
2021-09-10
Online:
2021-02-01
Contact:
Zhangjie Wang,Ju Li,Zhiwei Shan
About author:
zwshan@mail.xjtu.edu.cn (Z. Shan).Huanhuan Lu, Zhangjie Wang, Di Yun, Ju Li, Zhiwei Shan. A new approach of using Lorentz force to study single-asperity friction inside TEM[J]. J. Mater. Sci. Technol., 2021, 84: 43-48.
Fig. 1. Schematic diagrams of the Lorentz-force-actuated method for friction experiments inside TEM. The force diagrams in the framed region exhibit that the punch deflects by the Lorentz force and the cantilever deflects under the friction force.
Fig. 2. Silver asperity sliding against tungsten punch under TEM. (a) The schematic diagram shows the deflection of the tungsten punch and the silver cantilever. The inset shows the three-dimensional sketch of the silver cantilever. (b) The electromechanical coupling curve for one cycle of friction test. (c) The frame extracted from the in situ video illustrates tracking points of the punch and the cantilever marked by solid red and blue triangles, respectively. (d) The deflection of the tungsten punch and the silver cantilever with respect to the electric current, with the error bars from the standard deviation over six-time tracking measurements.
Fig. 3. The finite element analysis for the stiffness of the silver cantilever by the Multiphysics package, COMSOL. (a) The finite element model for the silver cantilever experiencing normal force in the z-axis and lateral force along the x-axis. (b) The color map for the deflection along the x-axis. (c) The lateral force versus the deflection along the x-axis at the tracking point marked by solid blue triangle in (b), respectively.
Fig. 4. The transition from static to dynamic friction for the submicron-sized silver-tungsten contact. (a) The frame extracted from the in situ video corresponding to the starting point of the constant normal force (20 μN). (b)-(f) Frames corresponding to the b-f points in (g), respectively. (g)-(h) The friction force and relative displacements with respect to the punch deflection, respectively, with error bars calculated by the standard deviation propagation equation.
[1] |
I. Svetlizky, E. Bayart, J. Fineberg, Annu. Rev. Condens. Matter Phys. 10 (2019) 253-273.
DOI |
[2] |
I.M. Hutchings, Wear 360-361 (2016) 51-66.
DOI URL |
[3] |
H. Ghaednia, X. Wang, S. Saha, Y. Xu, A. Sharma, R.L. Jackson, Appl. Mech. Rev. 69 (2017), 060804.
DOI URL |
[4] |
R.W. Carpick, Science 359 (2018), 38-38.
DOI |
[5] | I. Szlufarska, M. Chandross, R.W. Carpick, J. Phys. D Appl. Phys. 41 (2008), 123001. |
[6] |
C.M. Mate, G.M. Mcclelland, R. Erlandsson, S. Chiang, Phys. Rev. Lett. 59 (1987) 1942-1945.
PMID |
[7] |
R.W. Carpick, N. Agrait, D.F. Ogletree, M. Salmeron, J. Vac. Sci. Technol. B 14 (1996) 1289-1295.
DOI URL |
[8] |
H. Bhaskaran, B. Gotsmann, A. Sebastian, U. Drechsler, M.A. Lantz, M. Despont, P. Jaroenapibal, R.W. Carpick, Y. Chen, K. Sridharan, Nat. Nanotechnol. 5 (2010) 181-185.
DOI PMID |
[9] | R.W. Carpick, Proc. STLE/ASME Int. Jt. Tribol. Conf. 43369 (2008) 95-97. |
[10] |
T.D.B. Jacobs, C. Greiner, K.J. Wahl, R.W. Carpick, MRS Bull. 44 (2019) 478-486.
DOI |
[11] |
Y. Liao, L. Marks, Int. Mater. Rev. 62 (2017) 99-115.
DOI URL |
[12] |
T. Kizuka, Phys. Rev. B 57 (1998) 11158-11163.
DOI URL |
[13] |
K. Svensson, Y. Jompol, H. Olin, E. Olsson, Rev. Sci. Instrum. 74 (2003) 4945-4947.
DOI URL |
[14] |
R. Ribeiro, Z. Shan, A.M. Minor, H. Liang, Wear 263 (2007) 1556-1559.
DOI URL |
[15] |
K. Anantheshwara, M.S. Bobji, Tribol. Int. 43 (2010) 1099-1103.
DOI URL |
[16] |
T. Sato, T. Ishida, L. Jalabert, H. Fujita, Tribol. Online 6 (2011) 226-229.
DOI URL |
[17] |
S. Takaaki, I. Tadashi, J. Laurent, F. Hiroyuki, Nanotechnology 23 (2012), 505701.
DOI PMID |
[18] |
T. Sato, L. Jalabert, H. Fujita, Microelectron. Eng. 112 (2013) 269-272.
DOI URL |
[19] |
A.P. Merkle, L.D. Marks, Appl. Phys. Lett. 90 (2007), 064101.
DOI URL |
[20] |
S.O.R. Moheimani, Rev. Sci. Instrum. 79 (2008), 071101.
DOI URL |
[21] |
T. Ishida, T. Sato, T. Ishikawa, M. Oguma, N. Itamura, K. Goda, N. Sasaki, H. Fujita, Nano Lett. 15 (2015) 1476-1480.
DOI URL |
[22] |
Y. Sun, D. Piyabongkarn, A. Sezen, B. Nelson, R. Rajamani, Sens. Actuator A: Phys. 102 (2002) 49-60.
DOI URL |
[23] | D.B. Williams, C.B. Carter, Springer, 2009. |
[24] | O.L. Warren, S.S. Asif, E. Cyrankowski, K. Kounev, Actuatable capacitivetransducer for quantitative nanoindentation combined with transmissionelectron microscopy, US Patent, No. 7798011 B2, 2010. |
[25] |
M. Goto, F. Honda, M. Uemura, Wear 252 (2002) 777-786.
DOI URL |
[26] |
P. Zhang, P. Chai, X. Zhao, Z. Shan, Microsc. Microanal. 22 (2016) 174-175.
DOI URL |
[27] |
Y. Wang, W. Zhang, L. Wang, Z. Zhuang, E. Ma, J. Li, Z. Shan, NPG Asia Mater. 8 (2016) e291-297.
DOI URL |
[28] |
S.G. Nilsson, X. Borrise, L. Montelius, Appl. Phys. Lett. 85 (2004) 3555-3557.
DOI URL |
[29] |
S. Li, Q. Li, R.W. Carpick, P. Gumbsch, X.Z. Liu, X. Ding, J. Sun, J. Li, Nature 539 (2016) 541-545.
DOI URL |
[30] |
K. Tian, N.N. Gosvami, D.L. Goldsby, Y. Liu, I. Szlufarska, R.W. Carpick, Phys. Rev. Lett. 118 (2017), 076103.
DOI URL |
[31] | M. Ohnaka, The Physics of Rock Failure and Earthquakes, Cambridge University Press, 2013. |
[32] |
C.H. Scholz, Nature 391 (1998) 37.
DOI URL |
[33] | B. Bhushan, Handbook of Micro/Nanotribology, second edition, CRC Press 1999. |
[34] |
B. Jeremic, D. Vukelic, P.M. Todorovic, I. Macuzic, M. Pantic, D. Dzunic, B. Tadic, J. Frict. Wear 34 (2013) 114-119.
DOI URL |
[35] |
I. Etsion, O. Levinson, G. Halperin, M. Varenberg, J. Tribol. 127 (2005) 47-50.
DOI URL |
[36] |
A. Ovcharenko, G. Halperin, I. Etsion, M. Varenberg, Tribol. Lett. 23 (2006) 55-63.
DOI URL |
[37] |
A. Pougis, S. Philippon, R. Massion, L. Faure, J.J. Fundenberger, L.S. Toth, Tribol. Int. 67 (2013) 27-35.
DOI URL |
[38] |
A. Wu, X. Shi, A.A. Polycarpou, J. Appl. Mech. 79 (2012), 051001.
DOI URL |
[39] | S.-B. Choi, Y.-M. Han, Piezoelectric Actuators: Control Applications of Smart Materials, CRC Press, 2010. |
[40] | S.J. Rupitsch, Piezoelectric Sensors and Actuators, Springer, 2019. |
[41] |
W.-M. Zhang, G. Meng, D. Chen, Sensors 7 (2007) 760-796.
DOI URL |
[42] |
G. Gu, L. Zhu, C. Su, H. Ding, S. Fatikow, IEEE Trans. Autom. Sci. Eng. 13 (2016) 313-332.
DOI URL |
[43] |
W.-M. Zhang, H. Yan, Z.-K. Peng, G. Meng, Sens. Actuator A: Phys. 214 (2014) 187-218.
DOI URL |
[44] |
M. Rakotondrabe, IEEE Trans. Autom. Sci. Eng. 8 (2011) 428-431.
DOI URL |
[45] | M. Christiansen, Adobe After Effects CS5 Visual Effects and Compositing Studio Techniques, Pearson Education, 2010. |
[1] | Shuchun Zhao, Qi Zhu, Xianghai An, Hua Wei, Kexing Song, Scott X. Mao, Jiangwei Wang. In situ atomistic observation of the deformation mechanism of Au nanowires with twin-twin intersection [J]. J. Mater. Sci. Technol., 2020, 53(0): 118-125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||