J. Mater. Sci. Technol. ›› 2021, Vol. 84: 49-58.DOI: 10.1016/j.jmst.2020.12.024
• Research Article • Previous Articles Next Articles
X.C. Lia, J.X. Zhaoa, J.H. Conga, R.D.K. Misrab,*(
), X.M. Wanga, X.L Wanga, C.J. Shanga,*(
)
Received:2020-10-06
Revised:2020-11-18
Accepted:2020-12-08
Published:2021-09-10
Online:2021-01-27
Contact:
R.D.K. Misra,C.J. Shang
About author:cjshang@ustb.edu.cn(C.J. Shang).X.C. Li, J.X. Zhao, J.H. Cong, R.D.K. Misra, X.M. Wang, X.L Wang, C.J. Shang. Machine learning guided automatic recognition of crystal boundaries in bainitic/martensitic alloy and relationship between boundary types and ductile-to-brittle transition behavior[J]. J. Mater. Sci. Technol., 2021, 84: 49-58.
Fig. 1. Microstructural hierarchy of lath martensite structure (a), six crystallographic variants (V1-V6) for the K-S orientation relationship that evolves on a (111) austenite plane (b), and standard pole figure showing orientations of 24 variants transformed from one austenite grain with K-S orientation relationship (c) [17].
Fig. 2. (a) Inverse pole figure color map of bainitic microstructure in experimental steel, (b) {001} pole figure, (c) variants in the selected PAG and (d) different types of boundaries: PAG boundaries (black lines), packet boundaries (blue lines), block boundaries (red lines) and sub-block boundaries (green lines) within the selected PAG.
| Variant Pair | OMA (o) | Axis | SMA (o) | Boundary Type | ||||
|---|---|---|---|---|---|---|---|---|
| {100} | {110} | {111} | {112} | {123} | ||||
| V1-V1 | - | - | - | |||||
| V1-V2 | 60.00 | [0.577 0.577 -0.577] | 48.19 | 0.00 | 0.00 | 0.00 | 0.00 | Block boundary |
| V1-V3 | 60.00 | [0.000 0.707 0.707] | 41.41 | 0.00 | 10.48 | 5.28 | 3.46 | Block boundary |
| V1-V4 | 10.52 | [0.000 -0.707 -0.707] | 7.44 | 0.00 | 6.08 | 5.25 | 3.44 | Sub-block boundary |
| V1-V5 | 60.00 | [0.000 -0.707 -0.707] | 41.41 | 0.00 | 10.58 | 5.18 | 3.37 | Block boundary |
| V1-V6 | 49.48 | [0.000 0.707 0.707] | 34.42 | 0.00 | 21.07 | 0.00 | 6.84 | Block boundary |
| V1-V7 | 49.47 | [-0.577 -0.577 0.577] | 39.95 | 10.52 | 0.00 | 9.81 | 2.29 | Packet boundary |
| V1-V8 | 10.53 | [0.577 0.577 -0.577] | 8.59 | 6.07 | 0.00 | 3.50 | 3.95 | |
| V1-V9 | 50.51 | [-0.615 0.186 -0.767] | 31.80 | 10.53 | 20.91 | 5.84 | 3.12 | |
| V1-V10 | 50.51 | [-0.739 -0.462 0.490] | 33.43 | 10.53 | 10.58 | 6.03 | 5.89 | |
| V1-V11 | 14.88 | [0.933 0.354 0.065] | 5.35 | 6.14 | 9.30 | 5.33 | 4.43 | |
| V1-V12 | 57.22 | [-0.357 0.603 0.714] | 39.20 | 6.15 | 14.18 | 5.33 | 4.43 | |
| V1-V13 | 14.88 | [0.354 -0.933 -0.065] | 5.35 | 6.15 | 9.30 | 5.38 | 4.41 | |
| V1-V14 | 50.51 | [-0.490 0.462 -0.739] | 33.43 | 10.53 | 10.48 | 6.20 | 5.54 | |
| V1-V15 | 57.21 | [-0.738 -0.246 0.628] | 37.67 | 7.44 | 20.12 | 6.05 | 4.30 | |
| V1-V16 | 20.60 | [0.659 -0.659 -0.363] | 15.45 | 7.43 | 4.97 | 6.05 | 1.75 | |
| V1-V17 | 51.73 | [-0.659 0.363 -0.659] | 38.31 | 9.56 | 12.10 | 4.95 | 0.38 | |
| V1-V18 | 47.12 | [-0.719 -0.302 0.626] | 32.24 | 14.21 | 14.21 | 3.07 | 4.76 | |
| V1-V19 | 50.51 | [-0.186 0.767 0.615] | 31.80 | 10.53 | 20.94 | 5.88 | 2.67 | |
| V1-V20 | 57.21 | [0.357 0.714 -0.603] | 39.19 | 6.15 | 14.21 | 5.36 | 4.41 | |
| V1-V21 | 20.60 | [0.955 0.000 -0.296] | 6.06 | 9.57 | 14.21 | 8.92 | 4.48 | |
| V1-V22 | 47.12 | [-0.302 0.626 0.719] | 32.25 | 14.21 | 14.18 | 3.11 | 4.48 | |
| V1-V23 | 57.21 | [-0.246 -0.628 -0.738] | 37.68 | 7.44 | 20.12 | 6.08 | 4.35 | |
| V1-V24 | 21.05 | [0.912 -0.410 0.000] | 8.59 | 7.44 | 13.55 | 8.57 | 6.23 | |
Table 1 Parameters for different variant pairs with K-S orientation relationship.
| Variant Pair | OMA (o) | Axis | SMA (o) | Boundary Type | ||||
|---|---|---|---|---|---|---|---|---|
| {100} | {110} | {111} | {112} | {123} | ||||
| V1-V1 | - | - | - | |||||
| V1-V2 | 60.00 | [0.577 0.577 -0.577] | 48.19 | 0.00 | 0.00 | 0.00 | 0.00 | Block boundary |
| V1-V3 | 60.00 | [0.000 0.707 0.707] | 41.41 | 0.00 | 10.48 | 5.28 | 3.46 | Block boundary |
| V1-V4 | 10.52 | [0.000 -0.707 -0.707] | 7.44 | 0.00 | 6.08 | 5.25 | 3.44 | Sub-block boundary |
| V1-V5 | 60.00 | [0.000 -0.707 -0.707] | 41.41 | 0.00 | 10.58 | 5.18 | 3.37 | Block boundary |
| V1-V6 | 49.48 | [0.000 0.707 0.707] | 34.42 | 0.00 | 21.07 | 0.00 | 6.84 | Block boundary |
| V1-V7 | 49.47 | [-0.577 -0.577 0.577] | 39.95 | 10.52 | 0.00 | 9.81 | 2.29 | Packet boundary |
| V1-V8 | 10.53 | [0.577 0.577 -0.577] | 8.59 | 6.07 | 0.00 | 3.50 | 3.95 | |
| V1-V9 | 50.51 | [-0.615 0.186 -0.767] | 31.80 | 10.53 | 20.91 | 5.84 | 3.12 | |
| V1-V10 | 50.51 | [-0.739 -0.462 0.490] | 33.43 | 10.53 | 10.58 | 6.03 | 5.89 | |
| V1-V11 | 14.88 | [0.933 0.354 0.065] | 5.35 | 6.14 | 9.30 | 5.33 | 4.43 | |
| V1-V12 | 57.22 | [-0.357 0.603 0.714] | 39.20 | 6.15 | 14.18 | 5.33 | 4.43 | |
| V1-V13 | 14.88 | [0.354 -0.933 -0.065] | 5.35 | 6.15 | 9.30 | 5.38 | 4.41 | |
| V1-V14 | 50.51 | [-0.490 0.462 -0.739] | 33.43 | 10.53 | 10.48 | 6.20 | 5.54 | |
| V1-V15 | 57.21 | [-0.738 -0.246 0.628] | 37.67 | 7.44 | 20.12 | 6.05 | 4.30 | |
| V1-V16 | 20.60 | [0.659 -0.659 -0.363] | 15.45 | 7.43 | 4.97 | 6.05 | 1.75 | |
| V1-V17 | 51.73 | [-0.659 0.363 -0.659] | 38.31 | 9.56 | 12.10 | 4.95 | 0.38 | |
| V1-V18 | 47.12 | [-0.719 -0.302 0.626] | 32.24 | 14.21 | 14.21 | 3.07 | 4.76 | |
| V1-V19 | 50.51 | [-0.186 0.767 0.615] | 31.80 | 10.53 | 20.94 | 5.88 | 2.67 | |
| V1-V20 | 57.21 | [0.357 0.714 -0.603] | 39.19 | 6.15 | 14.21 | 5.36 | 4.41 | |
| V1-V21 | 20.60 | [0.955 0.000 -0.296] | 6.06 | 9.57 | 14.21 | 8.92 | 4.48 | |
| V1-V22 | 47.12 | [-0.302 0.626 0.719] | 32.25 | 14.21 | 14.18 | 3.11 | 4.48 | |
| V1-V23 | 57.21 | [-0.246 -0.628 -0.738] | 37.68 | 7.44 | 20.12 | 6.08 | 4.35 | |
| V1-V24 | 21.05 | [0.912 -0.410 0.000] | 8.59 | 7.44 | 13.55 | 8.57 | 6.23 | |
Fig. 8. Boundary recognition in experiment steel by ML model. (a) Inverse pole figure color map of the bainite structure in experimental steel, (b) boundaries (black lines: PAG boundaries, blue lines: packet boundaries, red lines: block boundaries, green lines: sub-block boundaries), and (c) PAG boundaries skeleton map.
Fig. 10. Frequency distribution of different types of boundaries with different specific misorientation angles: (a) OMA, (b) {100}-SMA, (c) {110}-SMA, (d) {111}-SMA, (e) {112}-SMA, (f) {123}-SMA.
Fig. 11. Using Kernel density estimation to analyze the difference between different types of boundaries in different features. (a) {100}-SMA and {110}-SMA, (b) OMA and {111}-SMA, (c) {112}-SMA and {123}-SMA.
| [1] | C.J. Shang, X.M. Wang, S.W. Yang, X.L. He, H.B. Wu, Acta Metall. Sin. 39 (2003) 1019-1024 (in Chinese). |
| [2] | J.R. Yang, C.Y. Huang, S.C. Wang, Mater. Des. 13 (1992) 335-338. |
| [3] |
C. Wang, M. Wang, J. Shi, W. Hui, H. Dong, Scr. Mater. 58 (2008) 492-495.
DOI URL |
| [4] |
J.W. Morris, Z. Guo, ISIJ Int. 43 (2003) 410-419.
DOI URL |
| [5] |
J.W. Morris, Science 320 (2008) 1022-1023.
DOI PMID |
| [6] |
Z. Guo, C.S. Lee, J.W. Morris, Acta Mater. 52 (2004) 5511-5518.
DOI URL |
| [7] | X.J. Sun, C.J. Shang, P.F. Miao, L.L. Dong, Trans. Mater. Heat Treat. 41 (2020) 50-56. |
| [8] |
X. Li, X. Ma, S.V. Subramanian, C. Shang, R.D.K. Misra, Mater. Sci. Eng. A 616 (2014) 141-147.
DOI URL |
| [9] |
E. Bouyne, H.M. Flower, T.C. Lindley, A. Pineau, Scr. Mater. 39 (1998) 295-300.
DOI URL |
| [10] | C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui, H. Dong, Mater. Sci. Technol. 23 (2007) 659-664. |
| [11] | C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui, H. Dong, Iron Steel 11 (2007) 60-63. |
| [12] |
D.S. Liu, M. Luo, B.G. Cheng, R. Cao, J.H. Chen, Metall. Mater. Trans. A 49 (2018) 4918-4936.
DOI URL |
| [13] | S. Morito, H. Yoshida, T. Maki, X. Huang, Mater. Sci. Eng. A 438 (2006) 237-240. |
| [14] | Z. Luo, J. Shen, H. Su, Y. Ding, C. Yang, X. Zhu, Iron Steel Res. Int. 17 (2010) 40-48. |
| [15] |
H.W. Luo, X.H. Wang, Z.B. Liu, Z.Y. Yang, J. Mater. Sci. Technol. 51 (2020) 130-136.
DOI URL |
| [16] |
S.L. Long, Y.L. Liang, Y. Jiang, Y. Liang, M. Yang, Y.L. Yi, Mater. Sci. Eng. A 676 (2016) 38-47.
DOI URL |
| [17] |
H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Acta Mater. 54 (2006) 1279-1288.
DOI URL |
| [18] |
T. Furuhara, H. Kawata, S. Morito, G. Miyamoto, T. Maki, Metall. Mater. Trans. A 39 (2008) 1003-1013.
DOI URL |
| [19] |
X.L. Wang, Z.Q. Wang, L.L. Dong, C.J. Shang, X.P. Ma, S.V. Subramanian, Mater. Sci. Eng. A 704 (2017) 448-458.
DOI URL |
| [20] |
X.L. Wang, Z.Q. Wang, X.P. Ma, S.V. Subramanian, Z.J. Xie, C.J. Shang, X.C. Li, Mater. Charact. 140 (2018) 312-319.
DOI URL |
| [21] |
B.B. Wu, X.L. Wang, Z.Q. Wang, J.X. Zhao, Y.H. Jin, C.S. Wang, C.J. Shang, R.D.K. Misra, Mater. Sci. Eng. A 745 (2019) 126-136.
DOI URL |
| [22] |
B.B. Wu, S. Huang, Z.Q. Wang, J.X. Zhao, C.S. Wang, C.J. Shang, R.D.K. Misra, Mater. Lett. 250 (2019) 55-59.
DOI |
| [23] |
L. Germain, N. Gey, R. Mercier, P. Blaineau, M. Humbert, Acta Mater. 60 (2012) 4551-4562.
DOI URL |
| [24] | Z.Q. Wang, T.T. Song, Y. You, X.L. Wang, C.J. Shang, K. Liu, B. Chen, Chin. J. Eng. 40 (2018) 945-953. |
| [25] |
M. Abbasi, T.W. Nelson, C.D. Sorensen, L.Y. Wei, Mater. Charact. 66 (2012) 1-8.
DOI URL |
| [26] |
M. Abbasi, D. Kim, T.W. Nelson, M. Abbasi, Mater. Charact. 95 (2014) 219-231.
DOI URL |
| [27] |
G. Miyamoto, N. Iwata, N. Takayama, T. Furuhara, ISIJ Int. 51 (2011) 1174-1178.
DOI URL |
| [28] |
C.T. Wu, H.T. Chang, C.Y. Wu, S.W. Chen, S.Y. Huang, M.X. Huang, Y.T. Pan, P. Bradbury, J. Chou, H.W. Yen, Mater. Today 34 (2020) 41-45.
DOI URL |
| [29] |
C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman, Y. Su, Acta Mater. 170 (2019) 109-117.
DOI URL |
| [30] |
C. Shen, C. Wan, X. Wei, Y. Li, S. van der Zwaag, W. Xu, Acta Mater. 179 (2019) 201-214.
DOI URL |
| [31] | W.Y. Wang, S.L. Shang, Y. Wang, F. Han, K.A. Darling, Y. Wu, X. Xie, O.N. Senkov, J. Li, X.D. Hui, K.A. Dahmen, P.K. Liaw, L.J. Kecskes, Z.K. Liu, Nature Comput. Mater. 3 (2017) 1-10. |
| [32] | A. Chowdhury, E. Kautz, B. Yener, D. Lewis, Comput. Mater. Sci. 123 (2016) 176-187. |
| [33] |
B.L. DeCost, E.A. Holm, Comput. Mater. Sci. 110 (2015) 126-133.
DOI URL |
| [34] | S.M. Azimi, D. Britz, M. Engstler, M. Fritz, F. Mücklich, Sci. Rep. 8 (2018) 1-14. |
| [35] |
S. Gupta, J. Sarkar, M. Kundu, N.R. Bandyopadhyay, S. Ganguly, Measurement 151 (2020), 107224.
DOI URL |
| [36] | J.H. Friedman, Ann. Math. Stat. 29 (2001) 1189-1232. |
| [37] | A. Jalal, Int. J. Intell. Syst. 22 (2018) 177-193. |
| [38] | P. Domingos, Commun. ACM 55 (2012) 78-87. |
| [39] |
H. Beladi, G.S. Rohrer, A.D. Rollett, V. Tari, P.D. Hodgson, Acta Mater. 63 (2014) 86-98.
DOI URL |
| [40] |
S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, Acta Mater. 51 (2003) 1789-1799.
DOI URL |
| [41] |
S. Morito, H. Saito, T. Ogawa, T. Furuhara, T. Maki, ISIJ Int. 45 (2005) 91-94.
DOI URL |
| [42] |
T. Furuhara, H. Kawata, S. Morito, T. Maki, Mater. Sci. Eng. A 431 (2006) 228-236.
DOI URL |
| [43] |
X.C. Li, J.X. Zhao, J.L. Wang, X.L. Wang, S.L. Liu, C.J. Shang, Mater. Lett. 259 (2020), 126841.
DOI URL |
| [44] |
L. Breiman, Mach. Learn. 45 (2001) 5-32.
DOI URL |
| [45] |
C.L. Miao, C.J. Shang, H.S. Zurob, G.D. Zhang, S.V. Subramanian, Metall. Mater. Trans. A 43 (2012) 665-676.
DOI URL |
| [46] |
C. Shorten, T.M. Khoshgoftaar, J. Big Data 6 (2019) 1-48.
DOI URL |
| [47] | P. Corcoran, C. Costacke, V. Varkarakis, J. Lemley, IEEE Consum. Electron. Mag. 9 (2020) 48-54. |
| [48] | M. Rosenblatt, J. Ann. Math. Stat. 27 (1956) 832-837. |
| [49] |
E. Parzen, Ann. Math. Stat. 33 (1962) 1065-1076.
DOI URL |
| [50] |
A. Lambert, X. Garat, T. Sturel, Scr. Mater. 43 (2000) 161-166.
DOI URL |
| [51] |
A.F. Gourgues, H.M. Flower, T.C. Lindley, Mater. Sci. Tech. 16 (2000) 26-40.
DOI URL |
| [52] |
Y. You, C. Shang, W. Nie, S. Subramanian, Mater. Sci. Eng. A 558 (2012) 692-701.
DOI URL |
| [1] | Jin-Yu Zhang, Fu-Zhi Dai, Zhi-Peng Sun, Wen-Zheng Zhang. Structures and energetics of semicoherent interfaces of precipitates in hcp/bcc systems: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2021, 67(0): 50-60. |
| [2] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
| [3] | Yongfei Juan, Yongbing Dai, Yang Yang, Jiao Zhang. Accelerating materials discovery using machine learning [J]. J. Mater. Sci. Technol., 2021, 79(0): 178-190. |
| [4] | Fu-Zhi Dai, Yinjie Sun, Bo Wen, Huimin Xiang, Yanchun Zhou. Temperature Dependent Thermal and Elastic Properties of High Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2: Molecular Dynamics Simulation by Deep Learning Potential [J]. J. Mater. Sci. Technol., 2021, 72(0): 8-15. |
| [5] | Jia Li, Baobin Xie, Qihong Fang, Bin Liu, Yong Liu, Peter K. Liaw. High-throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 70-75. |
| [6] | Xuefei Huang, Baoqin Fu, Weigang Huang. Newly observed irrational crystallographic features of non-basal Mg2Sn precipitates in a Mg-4Sn alloy aged at 160 °C [J]. J. Mater. Sci. Technol., 2021, 77(0): 237-243. |
| [7] | Yingli Liu, Chen Niu, Zhuo Wang, Yong Gan, Yan Zhu, Shuhong Sun, Tao Shen. Machine learning in materials genome initiative: A review [J]. J. Mater. Sci. Technol., 2020, 57(0): 113-122. |
| [8] | Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential [J]. J. Mater. Sci. Technol., 2020, 43(0): 168-174. |
| [9] | Xu Wang, Nan Zhang, Yujie Zhong, Bailing Jiang, Langhong Lou, Jian Zhang, Jingyang Wang. Microstructure evolution and crystallography of directionally solidified Al2O3/Y3Al5O12 eutectic ceramics prepared by the modified Bridgman method [J]. J. Mater. Sci. Technol., 2019, 35(9): 1982-1988. |
| [10] | Yang Yi,Cai* Canying,Yang Qibin. Comparison of Two Simulation Methods in Electron Crystallography: BW Method and a Modified Direct Product Method of Scattering Matrix [J]. J. Mater. Sci. Technol., 2017, 33(2): 210-214. |
| [11] | Pasi P. Suikkanen, Cyril Cayron, Anthony J. DeArdo, L. Pentti Karjalainen. Crystallographic Analysis of Isothermally Transformed Bainite in 0.2C–2.0Mn–1.5Si–0.6Cr Steel Using EBSD [J]. J. Mater. Sci. Technol., 2013, 29(4): 359-366. |
| [12] | Pasi P. Suikkanen, Cyril Cayron, Anthony J. DeArdo, L. Pentti Karjalainen. Crystallographic Analysis of Martensite in 0.2C-2.0Mn-1.5Si-0.6Cr Steel using EBSD [J]. J Mater Sci Technol, 2011, 27(10): 920-930. |
| [13] | M.-X.Zhang, P.M.Kelly, M.Qian, J.A.Taylor. Application of Edge-to-edge Matching Model to Grain Refinement in Mg-Al Based Alloys [J]. J Mater Sci Technol, 2005, 21(Supl.1): 77-80. |
| [14] | Canying CAI, Qibin YANG, Hongrong LIU, Yanguo WANG. Quantitative Analysis of Zero and High Order Laue Zones Effects on the Exit Wave Function [J]. J Mater Sci Technol, 2004, 20(05): 481-484. |
| [15] | Canying CAI, Qibin YANG, Hongrong LIU. Modification of Analytical Expression of Electron Dynamical Diffraction [J]. J Mater Sci Technol, 2004, 20(01): 1-2. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
