J. Mater. Sci. Technol. ›› 2021, Vol. 84: 59-64.DOI: 10.1016/j.jmst.2020.12.027
• Letter • Previous Articles Next Articles
Zhong Lia,b, Dongxu Qiaoc, Yan Xua,b, Enze Zhoua,b, Chuntian Yanga,b, Xinyi Yuana,b, Yiping Luc,**(
), Ji-Dong Gud, Sand Wolfgange, Dake Xua,b,*(
), Fuhui Wanga,b
Received:2020-12-07
Published:2021-09-10
Online:2021-01-27
Contact:
Yiping Lu,Dake Xu
About author:* Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China. E-mail addresses: xudake@mail.neu.edu.cn (D. Xu).Zhong Li, Dongxu Qiao, Yan Xu, Enze Zhou, Chuntian Yang, Xinyi Yuan, Yiping Lu, Ji-Dong Gu, Sand Wolfgang, Dake Xu, Fuhui Wang. Cu-bearing high-entropy alloys with excellent antiviral properties[J]. J. Mater. Sci. Technol., 2021, 84: 59-64.
Fig. 1. Characterization of the material properties of the CuFeCrCoNi HEA: (a) XRD analysis, (b) EPMA-BSE images, (c) elemental mapping distribution, and (d) engineering compressive curve. In Fig. 1(b), “A” indicates the dendrite regions and “B” indicates the interdendrite regions. In Fig. 1(c), those images are from the same field of the EPMA-BSE image.
| Region | Cu | Fe | Cr | Co | Ni |
|---|---|---|---|---|---|
| Dendrite region (A) | 9.88 | 23.28 | 23.00 | 23.67 | 20.18 |
| Interdendrite region (B) | 84.00 | 3.21 | 2.65 | 3.38 | 6.76 |
Table 1 Chemical composition (at%) of different regions of the CuFeCrCoNi HEA measured by EPMA-WDS.
| Region | Cu | Fe | Cr | Co | Ni |
|---|---|---|---|---|---|
| Dendrite region (A) | 9.88 | 23.28 | 23.00 | 23.67 | 20.18 |
| Interdendrite region (B) | 84.00 | 3.21 | 2.65 | 3.38 | 6.76 |
Fig. 2. Antiviral properties of the CuFeCrCoNi HEA against two viruses: (a) influenza virus H1N1 and (b) enterovirus 71. Standard deviations are from at least 3 parallel tests.
Fig. 3. Electrochemical analysis of the corrosion resistance of two Cu-HEAs: (a) Rp and icorr and (b) polarization curves. Standard deviations are from at least 3 parallel tests.
| EOCP (mV) vs. SCE | Ecorr (mV) vs. SCE | |
|---|---|---|
| 304SS | -258.3 ± 35.1 | -285.7 ± 42.7 |
| CuFeCrCoNi | -195.4 ± 47.7 | -228.6 ± 23.1 |
| Al0.4CuFeCrCoNi | -196.5 ± 28.3 | -232.0 ± 18.5 |
Table 2 Electrochemical parameters of the two Cu-HEAs.
| EOCP (mV) vs. SCE | Ecorr (mV) vs. SCE | |
|---|---|---|
| 304SS | -258.3 ± 35.1 | -285.7 ± 42.7 |
| CuFeCrCoNi | -195.4 ± 47.7 | -228.6 ± 23.1 |
| Al0.4CuFeCrCoNi | -196.5 ± 28.3 | -232.0 ± 18.5 |
Fig. 4. Antiviral properties of the Al0.4CuFeCrCoNi HEA against two viruses: (a) influenza virus H1N1 and (b) enterovirus 71. Standard deviations are from at least 3 parallel tests.
| [1] | WHO, Coronavirus Disease (COVID-19) Dashboard, 2020 https://covid19.who.int/. |
| [2] | R.M. Anderson, C. Fraser, A.C. Ghani, C.A. Donnelly, S. Riley, N.M. Ferguson, G.M. Leung, T.H. Lam, A.J. Hedley, Philos. Trans. R. Soc. Lond. B-Biol.Sci. 359 (2004) 1091-1105. |
| [3] |
F.S. Alhamlan, M.S. Majumder, J.S. Brownstein, J. Hawkins, H.M. Al-Abdely, A. Alzahrani, D.A. Obaid, M.N. Al-Ahdal, A. BinSaeed, BMJ Open 7 (2017), e011865.
DOI URL |
| [4] | E. Paintsil, Y.C. Cheng, in: T.M. Schmidt (Ed.), Encyclopedia of Microbiology, 4th edn, Academic Press, 2019, pp.176-225.65. |
| [5] |
E.L. Zhang, S. Fu, R.X. Wang, H.X. Li, Y. Liu, Z.Q. Ma, G.K. Liu, C.S. Zhu, G.W. Qin, D.F. Chen, Rare Met. 38 (2019) 476-494.
DOI URL |
| [6] |
G. Grass, C. Rensing, M. Solioz, Appl. Environ. Microbiol. 77 (2011) 1541-1547.
DOI URL |
| [7] |
M. Vincent, R.E. Duval, P. Hartemann, M. Engels-Deutsch, J. Appl. Microbiol. 124 (2018) 1032-1046.
DOI PMID |
| [8] |
T.M. Gross, J. Lahiri, A. Golas, J. Luo, F. Verrier, J.L. Kurzejewski, D.E. Baker, J. Wang, P.F. Novak, M.J. Snyder, Nat. Commun. 10 (2019) 1979.
DOI URL |
| [9] |
S.L. Warnes, E.N. Summersgill, C.W. Keevil, Appl. Environ. Microbiol. 81 (2015) 1085-1091.
DOI URL |
| [10] |
X. Zhang, C. Yang, K. Yang, ACS Appl. Mater. Interfaces 12 (2020) 361-372.
DOI URL |
| [11] |
M. Li, Z. Ma, Y. Zhu, H. Xia, M. Yao, X. Chu, X. Wang, K. Yang, M. Yang, Y. Zhang, C. Mao, Adv. Healthc. Mater. 5 (2016) 557-566.
DOI URL |
| [12] |
J. Liu, F. Li, C. Liu, H. Wang, B. Ren, K. Yang, E. Zhang, Mater. Sci. Eng. C 35 (2014) 392-400.
DOI URL |
| [13] |
E. Zhang, J. Ren, S. Li, L. Yang, G. Qin, Biomed. Mater. 11 (2016), 065001.
DOI URL |
| [14] |
S. Chen, X. Dong, R. Ma, L. Zhang, H. Wang, Z. Fan, Mater. Sci. Eng. A 551 (2012) 87-94.
DOI URL |
| [15] | S.Q. Chen, X.P. Dong, X.Q. Xiong, R. Ma, Z.T. Fan, Adv. Mater. Res. 463-464 (2012) 52-57. |
| [16] |
B. Bai, E. Zhang, J. Liu, J. Zhu, Dent. Mater. J. 35 (2016) 659-667.
DOI URL |
| [17] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4 (2019) 515-534.
DOI |
| [18] |
M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Acta Mater. 59 (2011) 6308-6317.
DOI URL |
| [19] |
S.T. Chen, W.Y. Tang, Y.F. Kuo, S.Y. Chen, C.H. Tsau, T.T. Shun, J.W. Yeh, Mater. Sci. Eng. A 527 (2010) 5818-5825.
DOI URL |
| [20] |
J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, H.C. Chen, Wear 261 (2006) 513-519.
DOI URL |
| [21] |
C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang, Metall. Mater. Trans. A 36 (2005) 881-893.
DOI URL |
| [22] |
W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Intermetallics 26 (2012) 44-51.
DOI URL |
| [23] |
X. Sun, H. Zhu, J. Li, J. Huang, Z. Xie, Mater. Sci. Eng. A 743 (2019) 540-545.
DOI URL |
| [24] |
W.J. Kim, H.T. Jeong, H.K. Park, K. Park, T.W. Na, E. Choi, J. Alloy. Compd. 802 (2019) 152-165.
DOI |
| [25] |
E. Zhou, D. Qiao, Y. Yang, D. Xu, Y. Lu, J. Wang, J.A. Smith, H. Li, H. Zhao, P.K. Liaw, F. Wang, J. Mater. Sci. Technol. 46 (2020) 201-210.
DOI URL |
| [26] |
C.E. Slone, J. Miao, E.P. George, M.J. Mills, Acta Mater. 165 (2019) 496-507.
DOI |
| [27] |
M. Yang, D. Yan, F. Yuan, P. Jiang, E. Ma, X. Wu, Proc. Natl. Acad. Sci. U.S.A. 115 (2018) 7224-7229.
DOI URL |
| [28] |
T. Xi, M.B. Shahzad, D. Xu, Z. Sun, J. Zhao, C. Yang, M. Qi, K. Yang, Mater. Sci. Eng. C 71 (2017) 1079-1085.
DOI URL |
| [29] |
T. Xi, C. Yang, M. Babar Shahzad, K. Yang, Mater. Des. 87 (2015) 303-312.
DOI URL |
| [30] |
E. Ma, X. Wu, Nat. Commun. 10 (2019) 5623.
DOI URL |
| [31] |
Q. Wang, A. Sarkar, D. Wang, L. Velasco, R. Azmi, S.S. Bhattacharya, T. Bergfeldt, A. Düvel, P. Heitjans, T. Brezesinski, H. Hahn, B. Breitung, Energ. Environ. Sci. 12 (2019) 2433-2442.
DOI URL |
| [32] |
J. Zhou, Z. Hu, F. Zabihi, Z. Chen, M. Zhu, Adv. Fiber Mater. 2 (2020) 123-139.
DOI URL |
| [33] |
L. Liang, A. Ahamed, L. Ge, X. Fu, G. Lisak, ChemPlusChem 85 (2020) 2105-2128.
DOI URL |
| [34] | R. Nho, Nanomedicine 29 (2020), 102242. |
| [35] |
J. Zhao, V. Castranova, J. Toxicol. Environ. Health B 14 (2011) 593-632.
DOI URL |
| [36] |
W. Wang, S.X. Wang, H.S. Guan, Mar. Drugs 10 (2012) 2795-2816.
DOI PMID |
| [37] |
A. Vaillant, Antiviral Res. 133 (2016) 32-40.
DOI URL |
| [38] |
D.C. Brice, G. Diamond, Curr. Med. Chem. 27 (2020) 1420-1443.
DOI URL |
| [39] |
E. Braun, D. Hotter, L. Koepke, F. Zech, R. Gross, K.M.J. Sparrer, J.A. Muller, C.K. Pfaller, E. Heusinger, R. Wombacher, K. Sutter, U. Dittmer, M. Winkler, G. Simmons, M.R. Jakobsen, K.K. Conzelmann, S. Pohlmann, J. Munch, O.T. Fackler, F. Kirchhoff, D. Sauter, Cell Rep. 27 (2019) 2092-2104, e2010.
DOI URL |
| [40] |
J.-L. Sagripanti, L.B. Routson, A.C. Bonifacino, C.D. Lytle, Antimicrob. Agents Ch. 41 (1997) 812-817.
DOI URL |
| [41] |
S.L. Warnes, C.W. Keevil, PLoS One 8(2013), e75017.
DOI URL |
| [42] |
M. Minoshima, Y. Lu, T. Kimura, R. Nakano, H. Ishiguro, Y. Kubota, K. Hashimoto, K. Sunada, J. Hazard. Mater. 312 (2016) 1-7.
DOI PMID |
| [43] | H. Michels, S. Wilks, J. Noyce, C. Keevil, Stainless Steel 77000(2005) 27. |
| [44] | J.R. Scully, Part 1: Can Antimicrobial Copper-based Alloys Help Suppress Infectious Transmission of Viruses Originating From Human Contact With High-touch Surfaces? NACE International, 2020. |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
