J. Mater. Sci. Technol. ›› 2021, Vol. 84: 65-75.DOI: 10.1016/j.jmst.2020.12.031
• Research Article • Previous Articles Next Articles
Hu Liua,c, Jie Weia,b,*(), Junhua Donga,b,*(
), Yangtao Zhoua, Yiqing Chenb, Yumin Wub, Subedi Dhruba Babua,c, Aniefiok Joseph Umoha,c, Wei Kea
Received:
2020-08-26
Revised:
2020-10-30
Accepted:
2020-12-07
Published:
2021-09-10
Online:
2021-01-27
Contact:
Jie Wei,Junhua Dong
About author:
jhdong@imr.ac.cn (J. Dong).Hu Liu, Jie Wei, Junhua Dong, Yangtao Zhou, Yiqing Chen, Yumin Wu, Subedi Dhruba Babu, Aniefiok Joseph Umoh, Wei Ke. The synergy between cementite spheroidization and Cu alloying on the corrosion resistance of ferrite-pearlite steel in acidic chloride solution[J]. J. Mater. Sci. Technol., 2021, 84: 65-75.
Samples | C | Si | Mn | P | S | Cu |
---|---|---|---|---|---|---|
45 steel | 0.427 | 0.308 | 0.558 | 0.007 | 0.006 | -- |
45Cu steel | 0.436 | 0.286 | 0.532 | 0.004 | 0.003 | 0.325 |
Table 1 The chemical composition (wt. %) of the experimental steels.
Samples | C | Si | Mn | P | S | Cu |
---|---|---|---|---|---|---|
45 steel | 0.427 | 0.308 | 0.558 | 0.007 | 0.006 | -- |
45Cu steel | 0.436 | 0.286 | 0.532 | 0.004 | 0.003 | 0.325 |
Fig. 5. The macroscopic corrosion morphologies of the three steels after rust removal with 216 h of immersion. (a) 45 steel, (b) 45Cu steel, (c) 45Cuq steel.
Fig. 8. The TEM micrographs of the diluted surface residues of 45Cu steel after 24 h of immersion. (a) Spherical particles, (b) invert contrast SAED pattern of the spherical precipitations taken along the [001] direction of Cu.
Fig. 15. The Bode plots and fitting curves of 45 (a, a1), 45Cu (b, b1) and 45Cuq (c, c1) steels in simulated solution after different time of immersion. (a-c) Bode impendence module plots, (a1-c1) Bode phase angle plots.
Fig. 16. The equivalent circuits for EIS fitting of the three steels in simulated solution after different time of immersion. (a) 45 steel (24 h-72 h), (a') 45 steel (120 h-216 h), (b) 45Cu and 45Cuq steels.
t (h) | L1×107 (H cm2) | Rs (Ω cm2) | Yc×103 (Ω-1 cm-2 s-n) | nc | Rc (Ω cm2) | L2 (H cm2) | R0 (Ω cm2) | Ya×103 (Ω-1 cm-2 s-n) | na | Ra (Ω cm2) | Chi-squared, χ2 |
---|---|---|---|---|---|---|---|---|---|---|---|
24 | 4.566 | 4.439 | 0.4558 | 0.9406 | 84.20 | - | - | 1.873 | 0.7682 | 86.91 | 1.617 × 10-4 |
48 | 5.677 | 4.084 | 0.6104 | 0.9048 | 47.45 | - | - | 1.936 | 0.8378 | 45.60 | 6.522 × 10-5 |
72 | 5.264 | 4.225 | 0.8828 | 0.8047 | 21.43 | - | - | 8.158 | 0.8132 | 22.30 | 3.200 × 10-4 |
120 | 7.542 | 3.681 | 2.552 | 0.7839 | 13.16 | 410.4 | 4.022 | 6.620 | 0.6606 | 10.24 | 4.776 × 10-4 |
216 | 4.065 | 4.075 | 4.234 | 0.7353 | 3.277 | 167.8 | 3.580 | 65.98 | 0.6609 | 4.980 | 7.592 × 10-4 |
Table 2 The fitting parameters of 45 steel after different time of immersion.
t (h) | L1×107 (H cm2) | Rs (Ω cm2) | Yc×103 (Ω-1 cm-2 s-n) | nc | Rc (Ω cm2) | L2 (H cm2) | R0 (Ω cm2) | Ya×103 (Ω-1 cm-2 s-n) | na | Ra (Ω cm2) | Chi-squared, χ2 |
---|---|---|---|---|---|---|---|---|---|---|---|
24 | 4.566 | 4.439 | 0.4558 | 0.9406 | 84.20 | - | - | 1.873 | 0.7682 | 86.91 | 1.617 × 10-4 |
48 | 5.677 | 4.084 | 0.6104 | 0.9048 | 47.45 | - | - | 1.936 | 0.8378 | 45.60 | 6.522 × 10-5 |
72 | 5.264 | 4.225 | 0.8828 | 0.8047 | 21.43 | - | - | 8.158 | 0.8132 | 22.30 | 3.200 × 10-4 |
120 | 7.542 | 3.681 | 2.552 | 0.7839 | 13.16 | 410.4 | 4.022 | 6.620 | 0.6606 | 10.24 | 4.776 × 10-4 |
216 | 4.065 | 4.075 | 4.234 | 0.7353 | 3.277 | 167.8 | 3.580 | 65.98 | 0.6609 | 4.980 | 7.592 × 10-4 |
t (h) | L1×107 (H cm2) | Rs (Ω cm2) | Yc×103 (Ω-1 cm-2 s-n) | nc | Rc (Ω cm2) | Ya×103 (Ω-1 cm-2 s-n) | na | Ra (Ω cm2) | Chi-squared, χ2 |
---|---|---|---|---|---|---|---|---|---|
24 | 4.821 | 4.397 | 0.1750 | 1.000 | 145.6 | 0.2898 | 0.8335 | 139.5 | 3.936 × 10-4 |
48 | 8.618 | 3.916 | 0.2847 | 0.9128 | 134.2 | 2.136 | 0.7754 | 135.6 | 2.910 × 10-4 |
72 | 12.02 | 3.833 | 0.4944 | 0.9012 | 146.8 | 5.012 | 0.6613 | 145.2 | 7.783 × 10-4 |
120 | 8.818 | 4.654 | 0.4700 | 0.9380 | 54.34 | 7.161 | 0.7422 | 58.20 | 1.885 × 10-5 |
216 | 6.960 | 4.548 | 0.8707 | 0.9374 | 62.37 | 7.283 | 0.7327 | 61.22 | 1.077 × 10-4 |
Table 3 The fitting parameters of 45Cu steel after different time of immersion.
t (h) | L1×107 (H cm2) | Rs (Ω cm2) | Yc×103 (Ω-1 cm-2 s-n) | nc | Rc (Ω cm2) | Ya×103 (Ω-1 cm-2 s-n) | na | Ra (Ω cm2) | Chi-squared, χ2 |
---|---|---|---|---|---|---|---|---|---|
24 | 4.821 | 4.397 | 0.1750 | 1.000 | 145.6 | 0.2898 | 0.8335 | 139.5 | 3.936 × 10-4 |
48 | 8.618 | 3.916 | 0.2847 | 0.9128 | 134.2 | 2.136 | 0.7754 | 135.6 | 2.910 × 10-4 |
72 | 12.02 | 3.833 | 0.4944 | 0.9012 | 146.8 | 5.012 | 0.6613 | 145.2 | 7.783 × 10-4 |
120 | 8.818 | 4.654 | 0.4700 | 0.9380 | 54.34 | 7.161 | 0.7422 | 58.20 | 1.885 × 10-5 |
216 | 6.960 | 4.548 | 0.8707 | 0.9374 | 62.37 | 7.283 | 0.7327 | 61.22 | 1.077 × 10-4 |
t (h) | L1×107 (H cm2) | Rs (Ω cm2) | Yc×103 (Ω-1 cm-2 s-n) | nc | Rc (Ω cm2) | Ya×103 (Ω-1 cm-2 s-n) | na | Ra (Ω cm2) | Chi-squared, χ2 |
---|---|---|---|---|---|---|---|---|---|
24 | 9.906 | 4.252 | 0.1878 | 0.9953 | 132.6 | 0.3839 | 0.8067 | 132.7 | 5.251 × 10-4 |
48 | 10.54 | 4.742 | 0.4071 | 0.9946 | 134.5 | 1.459 | 0.8002 | 138.3 | 7.142 × 10-5 |
72 | 10.10 | 4.533 | 0.3323 | 0.9325 | 97.92 | 1.930 | 0.8331 | 98.60 | 8.536 × 10-5 |
120 | 9.340 | 4.380 | 0.3540 | 0.9384 | 92.54 | 0.9206 | 0.8454 | 88.40 | 1.246 × 10-4 |
216 | 10.11 | 4.531 | 0.3332 | 0.9369 | 94.60 | 1.837 | 0.8271 | 102.2 | 8.007 × 10-5 |
Table 4 The fitting parameters of 45Cuq steel after different time of immersion.
t (h) | L1×107 (H cm2) | Rs (Ω cm2) | Yc×103 (Ω-1 cm-2 s-n) | nc | Rc (Ω cm2) | Ya×103 (Ω-1 cm-2 s-n) | na | Ra (Ω cm2) | Chi-squared, χ2 |
---|---|---|---|---|---|---|---|---|---|
24 | 9.906 | 4.252 | 0.1878 | 0.9953 | 132.6 | 0.3839 | 0.8067 | 132.7 | 5.251 × 10-4 |
48 | 10.54 | 4.742 | 0.4071 | 0.9946 | 134.5 | 1.459 | 0.8002 | 138.3 | 7.142 × 10-5 |
72 | 10.10 | 4.533 | 0.3323 | 0.9325 | 97.92 | 1.930 | 0.8331 | 98.60 | 8.536 × 10-5 |
120 | 9.340 | 4.380 | 0.3540 | 0.9384 | 92.54 | 0.9206 | 0.8454 | 88.40 | 1.246 × 10-4 |
216 | 10.11 | 4.531 | 0.3332 | 0.9369 | 94.60 | 1.837 | 0.8271 | 102.2 | 8.007 × 10-5 |
[1] | L.L. Liu, T.H. Zhang, Y.H. Xie, L. Li, A. Wulamu, Adv. Mater. Res. 873 (2013) 54-59. |
[2] |
F.M. Al-Abbasi, Mech. Mater. 63 (2013) 48-64.
DOI URL |
[3] |
V. Rault, V. Vignal, H. Krawiec, O. Tadjoa, Corros. Sci. 86 (2014) 275-284.
DOI URL |
[4] |
W.H. Xu, E.H. Han, Z.Y. Wang, J. Mater. Sci. Technol. 35 (2019) 64-75.
DOI URL |
[5] |
Z.X. Li, C.S. Li, J. Zhang, B.Z. Li, X.D. Pang, Metall. Mater. Trans. A. 47 (2016) 3607-3621.
DOI URL |
[6] |
F.M. Al-Abbasi, Mater. Sci. Eng. 527 (2010) 6904-6916.
DOI URL |
[7] |
C.L. Zhang, L.Y. Zhou, Y.Z. Liu, J. Mater. Sci. Technol. 29 (2013) 82-88.
DOI URL |
[8] |
X.H. Hao, J.H. Dong, I.I.N. Etim, J. Wei, W. Ke, Corros. Sci. 110 (2016) 296-304.
DOI URL |
[9] |
J. Wei, Y.T. Zhou, J.H. Dong, X.Y. He, W. Ke, Materialia 6 (2019), 100316.
DOI URL |
[10] |
C. Liu, Z.H. Jiang, J.B. Zhao, X.Q. Cheng, Z.Y. Liu, D.W. Zhang, X.G. Li, Corros. Sci. 166 (2020), 108463.
DOI URL |
[11] |
H.E. Townsend, Corrosion 57 (2001) 497-501.
DOI URL |
[12] | Y.J. Yue, D. Tang, H.B. Wu, J.M. Liang, B. Ju, J. Mater. Eng. 43 (2015) 14-20. |
[13] |
Y.F. Lu, J.H. Dong, W. Ke, J. Mater. Sci. Technol. 31 (2015) 1047-1058.
DOI URL |
[14] |
D. Ye, J. Li, W. Jiang, J. Su, K.Y. Zhao, Mater. Des. 41 (2012) 16-22.
DOI URL |
[15] |
E.E. Oguzie, J. Li, Y. Liu, D. Chen, Y. Li, K. Yang, F. Wang, Electrochim. Acta 55 (2010) 5028-5035.
DOI URL |
[16] |
L. Hao, S.X. Zhang, J.H. Dong, W. Ke, Corros. Sci. 53 (2011) 4187-4192.
DOI URL |
[17] | J.H. Dong, Corros. Sci. Prot. Technol. 22 (2010) 261-265. |
[18] |
R. Sriram, D. Tromans, Corrosion 45 (1989) 804-810.
DOI URL |
[19] |
L.F. Garfias-Mesias, J.M. Sykes, Corrosion 54 (1998) 40-47.
DOI URL |
[20] |
T.V. Shibaeva, V.K. Laurinavichyute, G.A. Tsirlina, A.M. Arsenkin, K.V. Grigorovich, Corros. Sci. 80 (2014) 299-308.
DOI URL |
[21] |
D.Z. Zhang, X.H. Gao, G.Q. Su, Z.G. Liu, N.N. Yang, L.X. Du, R.D.K. Misra, J. Mater. Eng. Perform. 27 (2018) 4911-4920.
DOI URL |
[22] |
J. Wei, J.H. Dong, Y.T. Zhou, X.Y. He, C.G. Wang, W. Ke, Mater. Charact. 139 (2018) 401-410.
DOI URL |
[23] | L. Yang, X.Y. Li, K. Lu, Acta Metall. Sin. 53 (2017) 1413-1417 (in Chinese). |
[24] | IMO, Proc. of the Maritime Safety Committee on Its Eighty-Seventh Session Annex 3 MSC, London, 2010, p. 87, 289. |
[25] | ISO. 8407, Corrosion of Metals and Alloys - Removal of Corrosion Products From Corrosion Test Specimens, Switzerland, 2009, 2009. |
[26] |
L.W. Wang, C.W. Du, Z.Y. Liu, X.X. Zeng, X.G. Li, Acta Metall. Sin. 47 (2011) 1227-1232 (in Chinese).
DOI |
[27] |
C.K. Ande, M.H.F. Sluiter, Acta Mater. 58 (2010) 6276-6281.
DOI URL |
[28] |
S.H. Kim, S.A. Park, J.G. Kim, K.S. Shin, Y. He, Met. Mater. Int. 21 (2015) 232-241.
DOI URL |
[29] |
F. Mansfeld, M.W. Kendig, J. Electrochem. Soc. 135 (1988) 828-833.
DOI URL |
[30] |
X.H. Hao, J.H. Dong, X. Mu, J. Wei, C.G. Wang, W. Ke, J. Mater. Sci. Technol. 35 (2019) 799-811.
DOI URL |
[31] |
F. Zhang, J.S. Pan, C.J. Lin, Corros. Sci. 51 (2009) 2130-2138.
DOI URL |
[32] |
C. Liu, X.Q. Cheng, Z.Y. Dai, R. Liu, Z.Y. Li, L.Y. Cui, M.D. Chen, L. Ke, Materials 11 (2018) 2277.
DOI URL |
[33] |
M. Kadowaki, I. Muto, Y. Sugawara, T. Doi, K. Kawano, N. Hara, J. Electrochem. Soc. 164 (2017) C261-C268.
DOI URL |
[34] |
H. Liu, J. Wei, J.H. Dong, Y.Q. Chen, Y.M. Wu, Y.T. Zhou, S.D. Babu, W. Ke, J. Mater. Sci. Technol. 61 (2021) 234-246.
DOI |
[35] |
M. Kadowaki, I. Muto, Y. Sugawara, T. Doi, K. Kawano, N. Hara, J. Electrochem. Soc. 164 (2017) C962-C972.
DOI URL |
[36] | H. Li, F. Chai, C. Yang, H. Su, X. Luo, Iron Steel 52 (2017) 76-82. |
[37] |
X.H. Hao, J.H. Dong, J. Wei, I.I.N. Etim, W. Ke, Corros. Sci. 121 (2017) 84-93.
DOI URL |
[38] |
H. Su, X.B. Luo, C.F. Yang, F. Chai, H. Li, J. Iron Steel Res. Int. 21 (2014) 619-624.
DOI URL |
[39] |
B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, M.X. Huang, Science 357 (2017) 1029-1032.
DOI PMID |
[40] |
Q.L. Wu, Z.H. Zhang, X.M. Dong, J.Q. Yang, Corros. Sci. 75 (2013) 400-408.
DOI URL |
[1] | Hu Liu, Jie Wei, Junhua Dong, Yiqing Chen, Yumin Wu, Yangtao Zhou, Subedi Dhruba Babu, Wei Ke. Influence of cementite spheroidization on relieving the micro-galvanic effect of ferrite-pearlite steel in acidic chloride environment [J]. J. Mater. Sci. Technol., 2021, 61(0): 234-246. |
[2] | Yuefeng Jiang, Bo Zhang, Dongying Wang, Yu Zhou, Jianqiu Wang, En-Hou Han, Wei Kea. Hydrogen-assisted fracture features of a high strength ferrite-pearlite steel [J]. J. Mater. Sci. Technol., 2019, 35(6): 1081-1087. |
[3] | Xianbo Shi, Wei Yan, Dake Xu, Maocheng Yan, Chunguang Yang, Yiyin Shan, Ke Yang. Microbial corrosion resistance of a novel Cu-bearing pipeline steel [J]. J. Mater. Sci. Technol., 2018, 34(12): 2480-2491. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||