Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 49 Issue (0): 117-125    DOI: 10.1016/j.jmst.2019.04.048
Research Article Current Issue | Archive | Adv Search |
A simultaneous improvement of both strength and ductility by Sn addition in as-extruded Mg-6Al-4Zn alloy
Xiao-Yuan Wanga,b, Yu-Fei Wanga,b, Cheng Wanga,b,c,*(), Shun Xua,b, Jian Ronga,b, Zhi-Zheng Yanga,b, Jin-Guo Wanga,b,*(), Hui-Yuan Wanga,b,c
a State Key Laboratory of Super Hard Materials, Jilin University, Changchun, 130012, China
b Key Laboratory of Automobile Materials of Ministry of Education & School of Materials Science and Engineering, Nanling Campus, Jilin University, No.5988 Renmin Street, Changchun, 130025, China
cInternational Center of Future Science, Jilin University, Changchun, 130012, China
Download:  HTML  PDF(4948KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Commercial wrought Mg alloys normally contain low alloying contents to ensure good formability. In the present work, high-alloyed Mg-6Al-4Zn-xSn (x = 1, 2 and 3 wt.%, respectively) alloys were fabricated by extrusion. Hereinto, Sn was proven to play an effective contribution to simultaneous improvement in strength and ductility that are traditional trade-off features of synthetic materials. It was found that the average grain size of those alloys decreases significantly from ~11 to ~4 μm as a function of Sn contents increasing from 0 to 3 wt.%, while the amounts of Mg2Sn and Mg17Al12 particles continuously increase. More importantly, the addition of Sn leads to the transformation of dominated deformation modes from {10$\bar{1}$2} extension twinning (1 wt.%) to pyramidal <c+a> slip (3 wt.%) during tensile tests along the extrusion direction at room temperature. The advantageous combination of ultimate tensile strength (~366 MPa) and elongation (~19 %) in Mg-6Al-4Zn-3Sn alloy is mainly attributed to the strong strain hardening ability induced by the enhanced activity of non-basal <c+a> slip. This work could provide new opportunities for the development of high-alloyed wrought Mg alloys with promising mechanical properties.

Key words:  Magnesium alloys      Microstructure      Deformation modes      Ductility     
Received:  21 January 2019     
Corresponding Authors:  Cheng Wang,Jin-Guo Wang     E-mail:  chengwang@jlu.edu.cn;jgwang@jlu.edu.cn

Cite this article: 

Xiao-Yuan Wang, Yu-Fei Wang, Cheng Wang, Shun Xu, Jian Rong, Zhi-Zheng Yang, Jin-Guo Wang, Hui-Yuan Wang. A simultaneous improvement of both strength and ductility by Sn addition in as-extruded Mg-6Al-4Zn alloy. J. Mater. Sci. Technol., 2020, 49(0): 117-125.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2019.04.048     OR     https://www.jmst.org/EN/Y2020/V49/I0/117

Notation Nominal composition Measured composition (wt.%)
Al Zn Sn Mg
AZ64 Mg-6Al-4Zn 5.80 4.13 - Bal.
AZT641 Mg-6Al-4Zn-1Sn 5.98 4.27 0.99 Bal.
AZT642 Mg-6Al-4Zn-2Sn 6.11 4.63 1.89 Bal.
AZT643 Mg-6Al-4Zn-3Sn 6.18 4.52 2.95 Bal.
Table 1  Nominal and measured compositions of the studied alloys.
Fig. 1.  Engineering stress-strain curves of as-extruded AZ64-xSn alloys under tension along extrusion direction at RT.
Nominal composition Yield strength σ0.2 (MPa) Ultimate tensile strength σb (MPa) Elongation ε (%) Fracture strain εb (%)
AZ64 $163_{-1}^{+2}$ $283_{-2}^{+3}$ $11.9_{-0.2}^{+0.8}$ $12.1_{-0.2}^{+0.8}$
AZT641 $171_{-6}^{+5}$ $328_{-7}^{+6}$ $14.8_{-1.7}^{+1.4}$ $16.3_{-1.7}^{+1.4}$
AZT642 $197_{-1}^{+2}$ $349_{-2}^{+3}$ $17.8_{-0.4}^{+0.9}$ $17.9_{-1.2}^{+1.9}$
AZT643 $207_{-3}^{+3}$ $366_{-1}^{+2}$ $19.1_{-0.6}^{+0.9}$ $20.3_{-0.6}^{+0.9}$
Table 2  Tensile properties of as-extruded AZ64-xSn alloys with different Sn contents tested along extrusion direction at RT.
Fig. 2.  Elongation and ultimate tensile strength of various Mg based as-extruded alloys with extrusion ratio varied from 25:1 to 40:1 reported in literatures [12,14,[20], [21], [22], [23], [24], [25], [26], [27], [28]].
Fig. 3.  Optical micrographs (inset: corresponding grain size distribution, dave represents the average grain size) of as-extruded AZ64-xSn alloys: (a) AZ64; (b) AZT641; (c) AZT642; (d) AZT643. (ED and TD stand for extrusion direction and transverse direction, respectively).
Fig. 4.  X-ray diffraction patterns of as-extruded AZ64-xSn alloys: (a) AZ64; (b) AZT641; (c) AZT642; (d) AZT643.
Fig. 5.  BSE-SEM and corresponding SE-SEM micrographs of as-extruded AZ64-xSn alloys: (a, e and i) AZ64; (b, f and j) AZT641; (c, g and k) AZT642; (d, h and l) AZT643. Af Mg2Sn and Af represent the area fraction of Mg2Sn and total precipitates, respectively.
Fig. 6.  (a) BSE-SEM micrograph of as-extruded AZT643 sample; (b) EDS line scan for Mg, Al, Zn and Sn of the particle in (a).
Fig. 7.  EBSD inverse pole figure (IPF) maps of as-extruded AZ64-xSn alloys and the different types of grains: (a,e) AZ64; (b,f) AZT641; (c,g) AZT642; (d,h) AZT643: blue-recrystallized, yellow-substructured, red-deformed.
Nominal composition Recrystallized (%) Substructured (%) Deformed (%)
AZ64 98.20 1.51 0.28
AZT641 95.08 3.57 1.35
AZT642 94.20 2.32 3.47
AZT643 89.99 3.85 6.15
Table 3  Corresponding area fraction of different types of grains in as-extruded AZ64-xSn alloys.
Fig. 8.  Pole figures of as-extruded AZ64-xSn alloys sheets: (a) AZ64; (b) AZT641; (c) AZT642; (d) AZT643.
Fig. 9.  Hardening curves for AZ64 and AZT643 alloys under tension at RT.
AZ64 AZT643
Non-deformed 8% deformed Variation (%) Non-deformed 8% deformed Variation (%)
Basal <a> 0.3 0.312 4 0.339 0.236 -30.4
Prismatic <a> 0.138 0.146 5.8 0.161 0.082 -49
Pyramidal <a> 0.276 0.274 -0.7 0.301 0.203 -32.6
Pyramidal <c+a> 0.396 0.386 -2.5 0.369 0.442 19.8
Table 4  Average Schmid factors calculated from the inverse pole figures of AZ64 and AZT643 samples at different tensile stages along ED.
Fig. 10.  EBSD band contrast maps of (a-c) AZ64 and (d-f) AZT643 samples superimposed by specific twin boundaries at different stages of tensile strain: 10$\bar{1}$2 extension twins identified by red lines reorient the basal planes by 86°, 10$\bar{1}$1 contraction twins marked by blue lines reorient the basal planes by 56° and 10$\bar{1}$1-10$\bar{1}$2 double twins in green lines reorient the basal planes by 38°.
Fig. 11.  Kernel average misorientation map and misorientation histograms of (a-f) AZ64 and (g-l) AZT643 samples at different stages of tensile strain.
[1] T. Nakata, C. Xu, R. Ajima, K. Shimizu, S. Hanaki, T.T. Sasaki, L. Ma, K. Hono, S. Kamado, Acta Mater. 130 (2017) 261-270.
doi: 10.1016/j.actamat.2017.03.046
[2] X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.Y. Wang, J. Mater. Sci. Technol. 34 (2017) 245-247.
doi: 10.1016/j.jmst.2017.07.019
[3] L. Hou, Z. Li, H. Zhao, Y. Pan, S. Pavlinich, X. Liu, X. Li, Y. Zheng, L. Li, J. Mater. Sci. Technol. 32 (9) (2016) 874-882.
doi: 10.1016/j.jmst.2016.07.004
[4] Z. Zhen, T. Xi, Y. Zheng, L. Li, L. Li, J. Mater. Sci. Technol. 30 (7) (2014) 675-685.
doi: 10.1016/j.jmst.2014.04.005
[5] S.H. Park S.-H. Kim, H.S. Kim, J. Yoon, B.S. You, J. Alloys. Compd. 667 (2016) 170-177.
doi: 10.1016/j.jallcom.2016.01.163
[6] C. Liu, C. Liu, H. Chen, J.-F. Nie, J. Mater. Sci. Technol. 34 (2) (2018) 284-290.
doi: 10.1016/j.jmst.2017.11.012
[7] K. Guan, F. Meng, P. Qin, Q. Yang, D. Zhang, B. Li, W. Sun, S. Lv, Y. Huang, N. Hort, J. Meng, J. Mater. Sci. Technol. 35 (2019) 1368-1377.
doi: 10.1016/j.jmst.2019.01.019
[8] X. Dong, J. Fu, J. Wang, Y. Yang, Mater. Des. 51 (2013) 567-574.
doi: 10.1016/j.matdes.2013.04.067
[9] J. Zhang, Z.X. Guo, F. Pan, Z. Li, X. Luo, Mater. Sci. Eng. A 456 (2007) 43-51.
doi: 10.1016/j.msea.2006.11.089
[10] J. Rong, P.Y. Wang, M. Zha, C. Wang, X.Y. Xu, H.Y. Wang, Q.C. Jiang, J. Alloys. Compd. 738 (2018) 246-254.
doi: 10.1016/j.jallcom.2017.11.348
[11] S. Zhu, T. Luo, Y. Yang, J. Mater. Sci. Technol. 33 (11) (2017) 1249-1254.
doi: 10.1016/j.jmst.2017.07.021
[12] L.Y. Jiang, D.F. Zhang, X.W. Fan, F. Guo, H.S. Xue, F.S. Pan, Mater. Sci. Technol. 32 (2016) 1838-1844.
doi: 10.1179/1743284715Y.0000000146
[13] W. Cheng, Y. Bai, S. Ma, L. Wang, H. Wang, H. Yu, J. Mater. Sci. Technol. 35 (2018) 1198-1209.
doi: 10.1016/j.jmst.2018.12.001
[14] S.-I. Lee, J.S. Kim, S.-J. Park, S.H. Park, J. Yoon, Mater. Des. 110 (2016) 510-518.
doi: 10.1016/j.matdes.2016.08.026
[15] C. Wang, H.Y. Zhang, H.Y. Wang, G.J. Liu, Q.C. Jiang, Scripta Mater. 69 (2013) 445-448.
doi: 10.1016/j.scriptamat.2013.05.026
[16] H.Y. Wang, X.L. Nan, N. Zhang, C. Wang, J.G. Wang, Q.C. Jiang, Mater. Chem. Phys. 132 (2012) 248-252.
doi: 10.1016/j.matchemphys.2011.12.036
[17] T.T. Sasaki, K. Yamamoto, T. Honma, S. Kamado, K. Hono, Scripta Mater. 59 (2008) 1111-1114.
doi: 10.1016/j.scriptamat.2008.07.042
[18] H.Y. Wang, J. Rong, G.J. Liu, M. Zha, C. Wang, D. Luo, Q.C. Jiang, Mater. Sci. Eng. A 698 (2017) 249-255.
doi: 10.1016/j.msea.2017.05.055
[19] D. Fang, N. Ma, K. Cai, X. Cai, Y. Chai, Q. Peng, Mater. Des. 54 (2014) 72-78.
doi: 10.1016/j.matdes.2013.08.028
[20] W.N. Tang, S.S. Park, B.S. You, Mater. Des. 32 (2011) 3537-3543.
doi: 10.1016/j.matdes.2011.02.012
[21] W.L. Cheng, H.S. Kim, B.S. You, B.H. Koo, S.S. Park, Mater. Lett. 65 (2011) 1525-1527.
doi: 10.1016/j.matlet.2011.03.010
[22] S.S. Park, W.N. Tang, B.S. You, Mater. Lett. 64 (2010) 31-34.
doi: 10.1016/j.matlet.2009.09.062
[23] S.-H. Kim, J.U. Lee, Y.J. Kim, B.G. Moon, B.S. You, H.S. Kim, S.H. Park, Mater. Sci. Eng. A 703 (2017) 1-8.
doi: 10.1016/j.msea.2017.07.048
[24] H.T. Son, D.G. Kim, J.S. Park, Mater. Lett. 65 (2011) 3150-3153.
doi: 10.1016/j.matlet.2011.06.105
[25] J. She, F. Pan, J. Zhang, A. Tang, S. Luo, Z. Yu, K. Song, M. Rashad, J. Alloys. Compd. 657 (2016) 893-905.
doi: 10.1016/j.jallcom.2015.10.146
[26] X. Lu, G. Zhao, J. Zhou, C. Zhang, L. Chen, S. Tang, J. Alloys. Compd. 732 (2018) 257-269.
doi: 10.1016/j.jallcom.2017.10.210
[27] J.G. Jung, S.H. Park, H. Yu, Y.M. Kim, Y.K. Lee, B.S. You, Scripta Mater. 93 (2014) 8-11.
doi: 10.1016/j.scriptamat.2014.08.017
[28] S. Meng, H. Yu, H. Zhang, H. Cui, S.H. Park, W. Zhao, B.S. You, Mater. Sci. Eng. A 690 (2017) 80-87.
doi: 10.1016/j.msea.2017.02.095
[29] B. Wang, X. Chen, F. Pan, J. Mao, Prog. Nat. Sci. Mater. Int. 27 (2017) 695-702.
doi: 10.1016/j.pnsc.2017.11.002
[30] Z. Li, J. Dong, X.Q. Zeng, C. Lu, W.J. Ding, Mater. Sci. Eng. A 466 (2007) 134-139.
doi: 10.1016/j.msea.2007.02.029
[31] S. Celotto, T.J. Bastow, Acta Mater. 49 (2001) 41-51.
doi: 10.1016/S1359-6454(00)00305-0
[32] W.J. Kim, I.B. Park, S.H. Han, Scripta Mater. 66 (2012) 590-593.
doi: 10.1016/j.scriptamat.2012.01.014
[33] W. Xiao, S. Jia, L. Wang, Y. Wu, L. Wang, Mater. Sci. Eng. A 527 (2010) 7002-7007.
doi: 10.1016/j.msea.2010.07.019
[34] D. Luo, H.Y. Wang, L. Zhang, G.J. Liu, J.B. Li, Q.C. Jiang, Mater. Sci. Eng. A 643 (2015) 149-155.
doi: 10.1016/j.msea.2015.07.005
[35] S.H. Park J.-G. Jung, Y.M. Kim, B.S. You, Mater. Lett. 139 (2015) 35-38.
doi: 10.1016/j.matlet.2014.10.033
[36] B. Wang, X. Chen, F. Pan, J. Mao, Prog. Nat. Sci. Mater. Int. 27 (2017) 695-702.
doi: 10.1016/j.pnsc.2017.11.002
[37] A.A. Luo, A.K. Sachdev, Metall. Mater. Trans. A 38 (2007) 1184-1192.
doi: 10.1007/s11661-007-9129-2
[38] X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, N. Saito, Mater. Sci. Eng. A 488 (2008) 214-220.
doi: 10.1016/j.msea.2007.11.029
[39] X. Liu, J.J. Jonas, L.X. Li, B.W. Zhu, Mater. Sci. Eng. A 583 (2013) 242-253.
doi: 10.1016/j.msea.2013.06.074
[40] X. Liu, B.W. Zhu, C. Xie, J. Zhang, C.P. Tang, Y.Q. Chen, Mater. Sci. Eng. A 733 (2018) 98-107.
doi: 10.1016/j.msea.2018.07.030
[41] C. Zhao, X. Chen, F. Pan, J. Wang, S. Gao, T. Tu, C. Liu, J. Yao, A. Atrens, J. Mater. Sci. Technol. 35 (2019) 142-150.
doi: 10.1016/j.jmst.2018.09.015
[42] C. Zhao, X. Chen, F. Pan, S. Gao, D. Zhao, X. Liu, Mater. Sci. Eng. A 713 (2018) 244-252.
doi: 10.1016/j.msea.2017.12.074
[43] D. Xiao, Z. Chen, X. Wang, M. Zhang, D. Chen, Mater. Sci. Eng. A 660 (2016) 166-171.
doi: 10.1016/j.msea.2016.03.001
[44] X.H. Chen, L. Lu, Scripta Mater. 57 (2007) 133-136.
doi: 10.1016/j.scriptamat.2007.03.029
[1] Xiaoyang Yi, Bin Sun, Weihong Gao, Xianglong Meng, Zhiyong Gao, Wei Cai, Liancheng Zhao. Microstructure evolution and superelasticity behavior of Ti-Ni-Hf shape memory alloy composite with multi-scale and heterogeneous reinforcements[J]. 材料科学与技术, 2020, 42(0): 113-121.
[2] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[3] Qun Luo, Yanlin Guo, Bin Liu, Yujun Feng, Jieyu Zhang, Qian Li, Kuochih Chou. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review[J]. 材料科学与技术, 2020, 44(0): 171-190.
[4] P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion[J]. 材料科学与技术, 2020, 45(0): 98-107.
[5] L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, J.W. Qiao. Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys[J]. 材料科学与技术, 2020, 42(0): 85-96.
[6] Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. 材料科学与技术, 2020, 42(0): 122-129.
[7] Juan Hou, Wei Chen, Zhuoer Chen, Kai Zhang, Aijun Huang. Microstructure, tensile properties and mechanical anisotropy of selective laser melted 304L stainless steel[J]. 材料科学与技术, 2020, 48(0): 63-71.
[8] Jian Yang Zhang, Bin Xu, Naeemul Haq Tariq, MingYue Sun, DianZhong Li, Yi Yi Li. Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding[J]. 材料科学与技术, 2020, 46(0): 1-11.
[9] Huihong Liu, Yo Aoki, Yasuhiro Aoki, Kohsaku Ushioda, Hidetoshi Fujii. Principle for obtaining high joint quality in dissimilar friction welding of Ti-6Al-4V alloy and SUS316L stainless steel[J]. 材料科学与技术, 2020, 46(0): 211-224.
[10] Zhixin Zhang, Jiangkun Fan, Bin Tang, Hongchao Kou, Jian Wang, Xin Wang, Shiying Wang, Qingjiang Wang, Zhiyong Chen, Jinshan Li. Microstructural evolution and FCC twinning behavior during hot deformation of high temperature titanium alloy Ti65[J]. 材料科学与技术, 2020, 49(0): 56-69.
[11] Pengfei Zhang, Yunchang Xin, Ling Zhang, Shiwei Pan, Qing Liu. On the texture memory effect of a cross-rolled Mg-2Zn-2Gd plate after unidirectional rolling[J]. 材料科学与技术, 2020, 41(0): 98-104.
[12] Ze-Tian Liu, Bing-Yu Wang, Cheng Wang, Min Zha, Guo-Jun Liu, Zhi-Zheng Yang, Jin-Guo Wang, Jie-Hua Li, Hui-Yuan Wang. Microstructure and mechanical properties of Al-Mg-Si alloy fabricated by a short process based on sub-rapid solidification[J]. 材料科学与技术, 2020, 41(0): 178-186.
[13] Wei Xu, Xin Lu, Jingjing Tian, Chao Huang, Miao Chen, Yu Yan, Luning Wang, Xuanhui Qu, Cuie Wen. Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications[J]. 材料科学与技术, 2020, 41(0): 191-198.
[14] Chaoyu Han, Shibo Wen1, Feng Ye, Wenjia Wu, Shaowei Xue, Yongfeng Liang, Binbin Liu, Junpin Lin. Deformation twinning in equiaxed-grained Fe-6.5 wt.%Si alloy after rotary swaging[J]. 材料科学与技术, 2020, 49(0): 25-34.
[15] Xiao-Li Fan, Chang-Yang Li, Yu-Bo Wang, Yuan-Fang Huo, Shuo-Qi Li, Rong-Chang Zeng. Corrosion resistance of an amino acid-bioinspired calcium phosphate coating on magnesium alloy AZ31[J]. 材料科学与技术, 2020, 49(0): 224-235.
[1] Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel[J]. J. Mater. Sci. Technol., 2020, 47(0): 1 -9 .
[2] Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2020, 47(0): 10 -19 .
[3] Wenjing Long, Haining Li, Bing Yang, Nan Huang, Lusheng Liu, Zhigang Gai, Xin Jiang. Research Article Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’[J]. J. Mater. Sci. Technol., 2020, 48(0): 1 -8 .
[4] Long Chen, Chengtao Yang, Chaoyi Yan. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets[J]. J. Mater. Sci. Technol., 2020, 48(0): 100 -104 .
[5] Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48(0): 105 -113 .
[6] Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48(0): 114 -122 .
[7] Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. J. Mater. Sci. Technol., 2020, 48(0): 123 -129 .
[8] Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity[J]. J. Mater. Sci. Technol., 2020, 48(0): 130 -139 .
[9] Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 140 -145 .
[10] H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 146 -155 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.