Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 49 Issue (0): 25-34    DOI: 10.1016/j.jmst.2020.01.048
Research Article Current Issue | Archive | Adv Search |
Deformation twinning in equiaxed-grained Fe-6.5 wt.%Si alloy after rotary swaging
Chaoyu Hana, Shibo Wena, Feng Yea,*(), Wenjia Wub, Shaowei Xuea, Yongfeng Lianga, Binbin Liua, Junpin Lina
a State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
b Tianjin Port Engineering Institute Co., Ltd. of CCCC First Harbor Engineering Co., Ltd, Tianjin 300222, China
Download:  HTML  PDF(3555KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Tensile behavior of an equiaxed-grained Fe-6.5 wt.%Si alloy, which was deformed into Φ6 mm bar by hot rotary swaging, was investigated at various temperatures (300-400 °C) and stretching rates (0.42-1 mm/min). The results revealed an enhancement in the intermediate-temperature tensile ductility after heat treatments. Deformation twinning was found in the equiaxed-grained Fe-6.5 wt.%Si bars during the tensile test, and heat treatments can enhance the deformation twinning. More twins can be observed in the necking areas than other regions. The high Schmid factor values above 0.4 after heat treatments demonstrated that deformation twinning can easily occur in the equiaxed-grained Fe-6.5 wt.%Si alloy. Higher deformation temperatures, higher strain rates, and larger degree of order suppressed the formation of deformation twinning, while the grain sizes had little effect on the deformation twinning. The twinning stress of the Fe-6.5 wt.%Si alloy increased with the increasing grain size, which did not agree with the Hall-Petch type relationship. The deformation twinning resulted in the improved ductility of the Fe-6.5 wt.%Si alloy.

Key words:  Fe-6.5 wt.%Si alloy      Hot rotary swaging      Equiaxed microstructure      Deformation twinning      Ductility     
Received:  07 November 2019     
Corresponding Authors:  Feng Ye     E-mail:  yefeng@skl.ustb.edu.cn

Cite this article: 

Chaoyu Han, Shibo Wen, Feng Ye, Wenjia Wu, Shaowei Xue, Yongfeng Liang, Binbin Liu, Junpin Lin. Deformation twinning in equiaxed-grained Fe-6.5 wt.%Si alloy after rotary swaging. J. Mater. Sci. Technol., 2020, 49(0): 25-34.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2020.01.048     OR     https://www.jmst.org/EN/Y2020/V49/I0/25

C Si Mn S P Ti B Fe
0.090 6.510 0.015 0.0009 0.054 0.005 0.0004 Bal
Table 1  Chemical compositions of Fe-6.5 wt.%Si alloy (wt.%).
Brine quenching (BQ) Water quenching (WQ) Step quenching (SQ)
800 °C ×5 min 800 °C ×5 min 800 °C ×5 min
800 °C ×10 min 800 °C ×10 min 800 °C ×10 min
850 °C ×5 min 850 °C ×5 min 850 °C ×5 min
850 °C ×10 min 850 °C ×10 min 850 °C ×10 min
Table 2  Heat treatments for as-received Φ6 mm hot rotary swaging bars.
Original size Heat treatments 800 °C ×5 min 800 °C ×10 min 850 °C ×5 min 850 °C ×10 min
490 BQ 556 544 580 600
WQ 516 520 604 520
SQ 548 660 582 678
Table 3  Variation of grain sizes (μm) of the Φ6 mm Fe-6.5 wt.% Si bars with heat treatment parameters.
Fig. 1.  Tensile load-displacement curves of the Φ6 mm bars (a) before and after heat treatments: (b) BQ, (c) WQ and (d) SQ.
Original sample Heat treatments 800 °C ×5 min 800 °C ×10 min 850 °C ×5 min 850 °C ×10 min
18.5 BQ 29.4 21.9 23.5 21.6
WQ 20.7 27.3 24.3 23.5
SQ 23.5 24.5 30.2 22.5
Table 4  Elongations (%) of the Φ6 mm bars before and after heat treatments.
Fig. 2.  Fracture morphology of specimens (a) before and after heat treatments: (b) BQ at 800 °C × 5 min, (c) WQ at 800 °C × 10 min, and (d) SQ at 850 °C × 5 min.
Fig. 3.  Microstructures of the Fe-6.5 wt.% Si ally specimens at 300 °C after tensile after heat treatment at 800 °C × 10 min: necking area (a) and homogeneous deformation area (b) after SQ, necking area (c) and homogeneous deformation area (d) after BQ.
Fig. 4.  Orientation maps and {112} pole figures of deformation bands and matrix: orientation map (a) and pole figure (b) of a specimen with SQ after 800 °C×10 min; orientation map (c) and pole figure (d) of a specimen with BQ after 800 °C × 10 min.
Fig. 5.  TEM images of deformation twins in a specimen with BQ after 800 °C × 10 min: (a) Bright field image shows thin lamellas of twins; (b) Dark field image; (c) Corresponding SAED pattern with a zone axis [113]T. The subscript M stands for the matrix and T for twin.
Fig. 6.  Orientation maps of the specimens after SQ at 800 °C×10 min (a), after BQ at 800 °C×10 min (b), and corresponding legend (c) for maps.
Grain Euler angles TTSF Grain Euler angles TTSF
1 (254.7 27.1 47.1) 0.41 34 (27.2 21.8 49.2) 0.46
2 (55.8 37.1 22.4) 0.34 35 (140.3 49.3 33.1) 0.22
3 (258.5 41.7 1.9) 0.28 36 (204.6 29.5 69.2) 0.40
4 (252.2 25.5 84.7) 0.43 37 (186.8 19.1 44.4) 0.30
5 (123.3 49.7 48.7) 0.21 38 (317.2 13.0 66.6) 0.49
6 (300.0 40.6 5.4) 0.44 39 (10.2 6.5 24.1) 0.28
7 (279.7 40.6 4.3) 0.29 40 (26.3 9.7 41.4) 0.32
8 (346.6 22.5 67.0) 0.45 41 (281.2 15.6 11.6) 0.49
9 (265.4 28.3 69.7) 0.41 42 (349.3 39.6 16.0) 0.48
10 (256.0 30.2 46.1) 0.38 43 (258.2 23.6 9.1) 0.45
11 (240.1 23.5 10.7) 0.45 44 (8.5 35.8 35.6) 0.33
12 (88.7 13.0 5.6) 0.49 45 (209.3 44.4 3.8) 0.42
13 (150.4 22.8 9.9) 0.45 46 (30.7 39.2 11.6) 0.40
14 (321.5 22.0 42.7) 0.45 47 (167.8 3.5 52.5) 0.32
15 (51.0 27.2 26.0) 0.41 48 (181.2 43.6 49.2) 0.26
16 (28.7 26.3 26.9) 0.42 49 (255.6 21.6 67.8) 0.46
17 (227.5 38.5 56.3) 0.31 50 (355.9 38.1 60.2) 0.32
18 (1.2 52.0 48.8) 0.19 51 (295.2 32.0 53.0) 0.36
19 (89.8 52.7 47.4) 0.18 52 (3.9 22.4 38.3) 0.39
20 (296.3 18.3 88.6) 0.47 53 (7.1 36.2 5.4) 0.48
21 (19.5 36.4 48.8) 0.32 54 (142.3 9.4 61.7) 0.33
22 (156.4 17.2 13.9) 0.48 55 (62.8 38.5 41.2) 0.28
23 (60.5 33.6 43.9) 0.34 56 (75.7 47.1 26.9) 0.23
24 (69.5 31.9 19.3) 0.38 57 (50.1 46.4 63.4) 0.25
25 (276.4 43.4 88.7) 0.26 58 (220.6 30.0 44.1) 0.47
26 (220.7 18.9 34.1) 0.47 59 (290.9 4.8 34.9) 0.38
27 (270.8 9.2 64.2) 0.50 60 (339.9 26.7 44.5) 0.41
28 (134.3 43.8 26.8) 0.28 61 (125.8 23.4 74.3) 0.45
29 (27.1 36.4 42.4) 0.31 62 (206.2 40.6 33.2) 0.40
30 (321.2 31.8 64.4) 0.38 63 (207.2 31.8 24.1) 0.38
31 (235.3 1.4 86.2) 0.48 64 (279.9 41.6 24.9) 0.43
32 (55.1 29.1 21.7) 0.40 65 (290.5 25.0 20.3) 0.43
33 (104.4 29.6 84.0) 0.40 66 (193.0 17.2 34.2) 0.30
Table 5  Euler angles and TTSF value in {112}<111> twinning system after SQ.
Grain Euler angles TTSF Grain Euler angles TTSF
1 (224.6 24.2 25.8) 0.44 25 (208.1 11.3 43.5) 0.50
2 (318.3 34.8 71.0) 0.33 26 (197.1 22.9 41.4) 0.37
3 (219.1 41.4 54.7) 0.41 27 (210.9 31.1 51.0) 0.45
4 (81.1 43.2 60.6) 0.43 28 (303.7 21.6 78.3) 0.46
5 (254.3 38.4 69.4) 0.42 29 (187.9 51.8 47.5) 0.19
6 (73.4 24.4 53.7) 0.44 30 (179.5 36.9 57.1) 0.33
7 (73.1 30.5 64.5) 0.4 31 (32.1 28.2 68.0) 0.45
8 (234.3 46.7 36.0) 0.24 32 (183.3 12.9 3.0) 0.43
9 (93.0 42.4 77.5) 0.28 33 (222.7 38.2 25.9) 0.40
10 (290.9 51.5 48.6) 0.19 34 (12.6 33.8 27.9) 0.36
11 (354.3 33.9 46.3) 0.30 35 (248.6 26.8 14.0) 0.40
12 (240.6 20.3 54.3) 0.47 36 (110.3 23.7 27.4) 0.44
13 (302.8 29.9 81.1) 0.42 37 (175.9 15 63.2) 0.41
14 (65.7 33.4 41.8) 0.4 38 (265.3 36 4.6) 0.34
15 (16.0 22.6 37.6) 0.45 39 (14.2 52.5 49.3) 0.19
16 (137.3 14.5 85.5) 0.42 40 (197.7 36.4 43.0) 0.30
17 (358.9 36.9 37.1) 0.29 41 (180.3 16.4 80.2) 0.48
18 (48.1 28.7 83.9) 0.41 42 (139.8 44.1 42.2) 0.23
19 (79.4 29.6 35.4) 0.40 43 (33.9 36.6 5.9) 0.42
20 (35.9 19.0 39.2) 0.47 44 (183.0 44.7 57.6) 0.26
21 (34.6 19.5 42.3) 0.39 45 (139.0 42.7 34.3) 0.35
22 (58.4 48.5 40.7) 0.19 46 (79.6 29.3 36.8) 0.42
23 (65.7 33.4 41.8) 0.34 47 (13.8 29.2 35.0) 0.39
24 (235.6 20.7 23.1) 0.46 48 (249.9 47.6 42.0) 0.22
Table 6  Euler angles and TTSF value in {112}<111> twinning system after BQ.
Fig. 7.  Tensile load-displacement curves of Φ6 mm bars after BQ at 300 °C (a) and at 400 °C (b).
Cooling methods Technical parameters
Brine quenching (BQ) 800 °C ×10 min 800 °C ×1 h 800 °C ×5 h 800 °C ×10 h
Furnace cooling (FC) 800 °C ×10 min 800 °C ×1 h 800 °C ×5 h 800 °C ×10 h
Table 7  Heat treatments of Φ6 mm bars.
Fig. 8.  Tensile load-displacement curves of Φ6 mm bars after heat treatments of BQ (a) and FC (b).
Fig. 9.  Relationship between twin stress and grain size: D (a) and 1/√D (b). D represents grain diameter.
Fig. 10.  TEM micrographs before deformation of the samples after heat treatment of FC and BQ.
After FC: (a) SAED patterns along [011] zone axis, Arrow A designates (200), and arrow B designates (111); (b) Dark field image obtained using (200) spot with arrows designating anti-phase boundary (APB); (c) Dark field image obtained using (111) spot.
After BQ: (d) SAED patterns along the [011] zone axis; (e) Dark field image obtained using (200) spot.
[1] R.M. Bozorth, Ferromagnetism, D. Van Nostrand, New York, 1951, pp. 849.
[2] K. Arai, N. Tsuya, IEEE T. Magn. 16 (1980) 126-129.
doi: 10.1109/TMAG.1980.1060560
[3] G. Ouyang, X. Chen, Y. Liang, C. Macziewski, J. Cui, J. Magn. Magn. Mater. 481 (2019) 234-250.
doi: 10.1016/j.jmmm.2019.02.089
[4] K. Raviprasad, M. Tenwick, H. Davies, K. Chattopadhyay, Scr. Metall. 20 (1986) 1265-1270.
doi: 10.1016/0036-9748(86)90045-1
[5] K. Raviprasad, K. Chattopadhyay, Acta Metall. Mater. 41 (2) (1993) 609-624.
doi: 10.1016/0956-7151(93)90091-6
[6] I. Bogachev, S. Karakishev, V. Litvinov, V. Ovchinnikov, Phys. Status Solidi A 24 (1974) 661-665.
[7] K.N. Kim, Study on New Processing Technology, Structure and Properties for Boron-doped Fe-6.5wt%Si Alloy Sheets, University of Science and Technology Beijing, 2004 (in Chinese).
[8] Y. Liang, S. Shang, J. Wang, Y. Wang, F. Ye, J. Lin, G. Chen, Z. Liu, Intermetallics 19 (2011) 1374-1384.
doi: 10.1016/j.intermet.2011.04.009
[9] Y. Takada, M. Abe, S. Masuda, J. Inagaki, J. Appl. Phys. 64 (1988) 5367-5369.
doi: 10.1063/1.342373
[10] X. He, X. Li, Y. Sun, J. Magn. Magn. Mater. 320 (2008) 217-221.
doi: 10.1016/j.jmmm.2007.05.030
[11] R. Machado, A. Kasama, A. Jorge Jr, C. Kiminami, W.B. Fo, C. Bolfarini, Mater. Sci. Eng. A 449 (2007) 854-857.
[12] C.C. Lima M.C. A. da Silva, M.D.C. Sobral, R.E. Coelho, C. Bolfarini, J. Alloys. Compd. 586 (2014) S314-S316.
doi: 10.1016/j.jallcom.2012.09.074
[13] T. Ros-Yanez, Y. Houbaert, V. Gómez Rodr$\acute{i}$guez, J. Appl. Phys. 91 (2002) 7857-7859.
doi: 10.1063/1.1449445
[14] R. Li, Q. Shen, L. Zhang, T. Zhang, J. Magn. Magn. Mater. 281 (2004) 135-139.
doi: 10.1016/j.jmmm.2004.04.098
[15] Y. Liang, F. Ye, J. Lin, Y. Wang, L. Zhang, G. Chen, Sci. China Technol. Sci. 53 (2010) 1008-1011.
doi: 10.1007/s11431-010-0125-1
[16] Y.F. Liang, F. Ye, J. Lin, Y. Wang, G. Chen, J. Alloys. Compd. 491 (1-2) (2010) 268-270.
doi: 10.1016/j.jallcom.2009.10.118
[17] Y.F. Liang, J.P. Lin, F. Ye, Y.L. Wang, L.Q. Zhang, G.L. Chen, Front. Mater. Sci. China 3 (2009) 329-332.
doi: 10.1007/s11706-009-0039-7
[18] Y. Liang, S. Wang, H. Li, Y. Jiang, F. Ye, J. Lin, Adv. Mater. Sci. Eng. 2015(2015).
[19] S. Wang, Y. Jiang, Y. Liang, F. Ye, J. Lin, Adv. Mater. Sci. Eng. 2015(2015).
[20] G. Fish, C.F. Chang, R. Bye, J. Appl. Phys. 64 (1988) 5370-5372.
doi: 10.1063/1.342374
[21] F. Ye, Y.F. Liang, J.P. Lin, 5th International Conference on Magnetism and Metallurgy, Ghent, Belgium: Ghent University Department of Metallurgy and Material Science, 2012.
pmid: 27013736
[22] X. Fang, Y. Liang, F. Ye, J. Lin, J. Appl. Phys. 111 (2012), 094913.
doi: 10.1063/1.4711102
[23] J. Liu, Y. Sha, F. Zhang, J. Li, Y. Yao, L. Zuo, Scr. Mater. 65 (2011) 292-295.
doi: 10.1016/j.scriptamat.2011.04.025
[24] J.S. Shin, Z.H. Lee, T.D. Lee, E. Lavernia, Scr. Mater. 45 (2001) 725-731.
doi: 10.1016/S1359-6462(01)01086-7
[25] X. Bi, Y. Tanaka, K. Sato, J. Magn. Magn. Mater. 112 (1992) 189-191.
doi: 10.1016/0304-8853(92)91149-N
[26] X. Bi, Y. Tanaka, K. Sato, K. Arai, K. Ishiyama, Y. Yamashiro, IEEE Trans. Magn. 32 (1996) 4818-4820.
doi: 10.1109/20.539162
[27] Y. Liang, J. Lin, F. Ye, Y. Li, Y. Wang, G. Chen, J. Alloys. Compd. 504 (2010) S476-S479.
doi: 10.1016/j.jallcom.2010.03.075
[28] H. Li, Y.F. Liang, F. Ye, Mater. Trans. 56 (2015) 759-765.
doi: 10.2320/matertrans.M2014451
[29] D. Ruiz, T. Ros-Yanez, R. Vandenberghe, E. De Grave, M. De Wulf, Y. Houbaert, J. Appl. Phys. 93 (2003) 7112-7114.
doi: 10.1063/1.1558196
[30] H. Li, Y.F. Liang, F. Ye, J. Iron Steel Res. Int. 23 (2016) 453-458.
doi: 10.1016/S1006-706X(16)30072-3
[31] Z. Zhang, W. Wang, H. Fu, J. Xie, Mater. Sci. Eng. A 530 (2011) 519-524.
doi: 10.1016/j.msea.2011.10.013
[32] Y. Liang, J. Ge, X. Fang, F. Ye, J. Lin, Mater. Sci. Eng. A 570 (2013) 8-12.
doi: 10.1016/j.msea.2013.01.070
[33] H. Li, Y. Liang, W. Yang, F. Ye, J. Lin, J. Xie, Mater. Sci. Eng. A 628 (2015) 262-268.
doi: 10.1016/j.msea.2015.01.058
[34] J. Xie, H. Fu, Z. Zhang, Y. Jiang, Intermetallics 23 (2012) 20-26.
doi: 10.1016/j.intermet.2011.12.011
[35] H. Fu, Z. Zhang, Y. Jiang, J. Xie, J. Alloys. Compd. 689 (2016) 307-312.
doi: 10.1016/j.jallcom.2016.07.319
[36] X. Shi, Y. Liang, B. Liu, Z. Ding, B. Zhang, F. Ye, Mater. Sci. Eng. A 762 (2019), 138095.
[37] B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142 (2018) 283-362.
doi: 10.1016/j.actamat.2017.06.046
[38] M. Di Giulio, Transformer with Magnetic Core of Coiled Wires, Brazil, No. O2000044006A3, 1999.
[39] I. Basile, G.B. Casati, Improvement and Modifications to Electrical Transformers for Any Application and Power, Italy, No. 1243278, 1994.
[40] W. Yang, H. Li, K. Yang, Y. Liang, J. Yang, F. Ye, Mater. Sci. Eng. B 186 (2014) 79-82.
doi: 10.1016/j.mseb.2014.03.013
[41] A. Sleeswyk, Philos. Mag. 8 (1963) 1467-1486.
doi: 10.1080/14786436308207311
[42] G. Olson, M. Cohen, Metall. Trans. A 7 (1976) 1905-1914.
[43] E. Bertrand, P. Castany, I. Péron, T. Gloriant, Scr. Mater. 64 (2011) 1110-1113.
doi: 10.1016/j.scriptamat.2011.02.033
[44] S.G. Hong, S.H. Park, C.S. Lee, Acta Mater. 58 (2010) 5873-5885.
doi: 10.1016/j.actamat.2010.07.002
[45] L. Jiang, J.J. Jonas, R. Mishra, A. Luo, A. Sachdev, S. Godet, Acta Mater. 55 (2007) 3899-3910.
doi: 10.1016/j.actamat.2007.03.006
[46] B. Ng, B. Simkin, M. Crimp, T. Bieler, Intermetallics 12 (2004) 1317-1323.
doi: 10.1016/j.intermet.2004.03.015
[47] J.W. Christian, S. Mahajan, Prog. Mater. Sci. 39 (1995) 1-157.
doi: 10.1016/0079-6425(94)00007-7
[48] M. Knezevic, M. Zecevic, I.J. Beyerlein, J.F. Bingert R.J. McCabe, Acta Mater. 88 (2015) 55-73.
doi: 10.1016/j.actamat.2015.01.037
[49] D. Hull, Acta Metall. 9 (1961) 191-204.
doi: 10.1016/0001-6160(61)90069-4
[50] M. Marcinkowski, H. Lipsitt, Acta Metall. 10 (1962) 95-111.
doi: 10.1016/0001-6160(62)90055-X
[51] K. Rahman, V. Vorontsov, D. Dye, Acta Mater. 89 (2015) 247-257.
doi: 10.1016/j.actamat.2015.02.008
[52] I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, Mater. Sci. Eng. A 527 (2010) 3552-3560.
doi: 10.1016/j.msea.2010.02.041
[53] S. Cui, G. Ouyang, T. Ma, C.R. Macziewski, V.I. Levitas, L. Zhou, M.J. Kramer, J. Cui, J. Alloys. Compd. 771 (2019) 643-648.
doi: 10.1016/j.jallcom.2018.08.293
[54] X.J. Shi, Y.F. Liang, B.B. Liu, B. Zhang, Ye Feng, J. Iron Steel Res. Int. 27 (2020) 342-354.
doi: 10.1007/s42243-019-00325-8
[55] R. Cahn, Acta Metall. 9 (1961) 138-148.
doi: 10.1016/0001-6160(61)90058-X
[1] Xiaoxiao Wei, Li Jin, Fenghua Wang, Jing Li, Nan Ye, Zhenyan Zhang, Jie Dong. High strength and ductility Mg-8Gd-3Y-0.5Zr alloy with bimodal structure and nano-precipitates[J]. 材料科学与技术, 2020, 44(0): 19-23.
[2] Xiao-Yuan Wang, Yu-Fei Wang, Cheng Wang, Shun Xu, Jian Rong, Zhi-Zheng Yang, Jin-Guo Wang, Hui-Yuan Wang. A simultaneous improvement of both strength and ductility by Sn addition in as-extruded Mg-6Al-4Zn alloy[J]. 材料科学与技术, 2020, 49(0): 117-125.
[3] Y.Z. Zhang, J.J. Wang, N.R. Tao. Tensile ductility and deformation mechanisms of a nanotwinned 316L austenitic stainless steel[J]. 材料科学与技术, 2020, 36(0): 65-69.
[4] Bingqiang Wei, Song Ni, Yong Liu, Xiaozhou Liao, Min Song. Phase transformation and structural evolution in a Ti-5at.% Al alloy induced by cold-rolling[J]. 材料科学与技术, 2020, 49(0): 211-223.
[5] Yifeng Li, Jianqiu Wang, En-Hou Han, Wenbo Wu, Hannu H?nninen. Multi-scale study of ductility-dip cracking in nickel-based alloy dissimilar metal weld[J]. 材料科学与技术, 2019, 35(4): 545-559.
[6] M. Wang, B.B. He, M.X. Huang. Strong and ductile Mg alloys developed by dislocation engineering[J]. 材料科学与技术, 2019, 35(3): 394-395.
[7] Chunping Huang, Xin Lin, Fencheng Liu, Haiou Yang, Weidong Huang. High strength and ductility of 34CrNiMo6 steel produced by laser solid forming[J]. 材料科学与技术, 2019, 35(2): 377-387.
[8] Kun Yang, Jian Wang, Liang Jia, Guangyu Yang, Huiping Tang, Yuanyuan Li. Additive manufacturing of Ti-6Al-4V lattice structures with high structural integrity under large compressive deformation[J]. 材料科学与技术, 2019, 35(2): 303-308.
[9] Zhiwei Xiong, Zhonghan Li, Zhen Sun, Shijie Hao, Ying Yang, Meng Li, Changhui Song, Ping Qiu, Lishan Cui. Selective laser melting of NiTi alloy with superior tensile property and shape memory effect[J]. 材料科学与技术, 2019, 35(10): 2238-2242.
[10] Tao Zhang, Lijun Xin, Fufa Wu, Rongda Zhao, Jun Xiang, Minghua Chen, Songshan Jiang, Yongjiang Huang, Shunhua Chen. Microstructure and mechanical properties of FexCoCrNiMn high-entropy alloys[J]. 材料科学与技术, 2019, 35(10): 2331-2335.
[11] Bo-Yu Liu, Nan Yang, Jian Wang, Matthew Barnett, Yun-Chang Xin, Di Wu, Ren-Long Xin, Bin Li, R.Lakshmi Narayan, Jian-Feng Nie, Ju Li, Evan Ma, Zhi-Wei Shan. Insight from in situ microscopy into which precipitate morphology can enable high strength in magnesium alloys[J]. 材料科学与技术, 2018, 34(7): 1061-1066.
[12] Zhang-Zhi Shi, Jing Yu, Xue-Feng Liu, Lu-Ning Wang. Fabrication and characterization of novel biodegradable Zn-Mn-Cu alloys[J]. 材料科学与技术, 2018, 34(6): 1008-1015.
[13] Wenya Li, Kang Yang, Shuo Yin, Xiawei Yang, Yaxin Xu, Rocco Lupoi. Solid-state additive manufacturing and repairing by cold spraying: A review[J]. 材料科学与技术, 2018, 34(3): 440-457.
[14] Min Zha, Hong-Min Zhang, Zhi-Yuan Yu, Xuan-He Zhang, Xiang-Tao Meng, Hui-Yuan Wang, Qi-Chuan Jiang. Bimodal microstructure - A feasible strategy for high-strength and ductile metallic materials[J]. 材料科学与技术, 2018, 34(2): 257-264.
[15] Yingjie Ma, Sabry S. Youssef, Xin Feng, Hao Wang, Sensen Huang, Jianke Qiu, Jiafeng Lei, Rui Yang. Fatigue crack tip plastic zone of α + β titanium alloy with Widmanstatten microstructure[J]. 材料科学与技术, 2018, 34(11): 2107-2115.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.