J. Mater. Sci. Technol. ›› 2021, Vol. 79: 88-98.DOI: 10.1016/j.jmst.2020.12.004
• Research Article • Previous Articles Next Articles
L. Jianga,b,e,*(), Z.Q. Chenc,d,e,*(
), H.B. Luf, H.B. Kec, Y. Yuana, Y.M. Donga, X.K. Mengb,**(
)
Received:
2020-06-23
Revised:
2020-10-04
Accepted:
2020-10-20
Published:
2020-12-28
Online:
2020-12-28
Contact:
L. Jiang,Z.Q. Chen,X.K. Meng
About author:
** E-mail addresses: mengxk@nju.edu.cn (X.K. Meng).1These authors contributed equally to this work.
L. Jiang, Z.Q. Chen, H.B. Lu, H.B. Ke, Y. Yuan, Y.M. Dong, X.K. Meng. Corrosion protection of NiNb metallic glass coatings for 316SS by magnetron sputtering[J]. J. Mater. Sci. Technol., 2021, 79: 88-98.
Fig. 1. SEM images of (a) Ni50Nb50, (b) Ni60Nb40 and (c) Ni50Nb50/Ni60Nb40 MGCs; EDS mappings of Ni and Nb elements recorded from the surface of (d) Ni50Nb50, (e) Ni60Nb40 and (f) Ni50Nb50/Ni60Nb40 MGCs; 3D AFM images of (g) Ni50Nb50, (h) Ni60Nb40 and (i) Ni50Nb50/Ni60Nb40 MGCs.
Fig. 2. The representative cross-sectional high resolution TEM images of (a) Ni50Nb50, (b) Ni60Nb40 and (c) Ni50Nb50/Ni60Nb40 MGCs. Inserts in (a), (b), (c) show the corresponding SAED patterns.
Fig. 3. The scratch morphology and the variation of acoustic emission signal (AE %) in terms of the scratch length and progressive normal load (Fn) for (a) Ni50Nb50, (b) Ni60Nb40 and (c) Ni50Nb50/Ni60Nb40 MGCs.
Fig. 4. (a) Potentiodynamic polarization curves of 316SS with and without NiNb MGCs; (b) potentiostatic polarization curves of the NiNb MG coated 316SS at the potential of 0.1 VAg/AgCl.
Samples | Ecorr (mV) | jcorr (μA cm-2) |
---|---|---|
316SS | -391 | 1.49 |
Ni50Nb50 | -298 | 0.00679 |
Ni60Nb40 | -404 | 0.334 |
Ni50Nb50/Ni60Nb40 | -283 | 0.00239 |
Table 1 Potentiodynamic polarization parameters of 316SS with and without NiNb MGCs.
Samples | Ecorr (mV) | jcorr (μA cm-2) |
---|---|---|
316SS | -391 | 1.49 |
Ni50Nb50 | -298 | 0.00679 |
Ni60Nb40 | -404 | 0.334 |
Ni50Nb50/Ni60Nb40 | -283 | 0.00239 |
Fig. 5. (a) Nyquist and (b) Bode plots for 316SS with and without NiNb MGCs; the equivalent circuits to fit the EIS plots for (c) uncoated 316SS, (d) Ni50Nb50 or Ni60Nb40 and (e) Ni50Nb50/Ni60Nb40 coated 316SS.
Samples | Rs (Ω cm2) | CPEc (Ω-1 cm-2 s-n) | Rpore (Ω cm2) | Zd-R (Ω cm2) | CPEdl (Ω-1 cm-2 s-n) | Rct (Ω cm2) | Rp (Ω cm2) |
---|---|---|---|---|---|---|---|
316SS | 21.12 | -- | -- | -- | 6.91 × 10 -5 | 9.69 × 10 4 | 9.69 × 10 4 |
Ni50Nb50 | 22.28 | 1.65 × 10 -5 | 1.88 × 10 6 | -- | 2.70 × 10 -6 | 4.23 × 10 6 | 6.11 × 10 6 |
Ni60Nb40 | 19.31 | 2.34 × 10 -5 | 7.68 × 10 5 | -- | 8.54 × 10 -6 | 1.61 × 10 6 | 2.38 × 10 6 |
Ni50Nb50/ Ni60Nb40 | 20.11 | 1.07 × 10 -9 | 5.52 × 10 4 | 5.25 × 10 5 | 6.92 × 10 -6 | 6.09 × 10 6 | 6.67 × 10 6 |
Table 2 Main fitted EIS parameters of 316SS with and without NiNb MGCs.
Samples | Rs (Ω cm2) | CPEc (Ω-1 cm-2 s-n) | Rpore (Ω cm2) | Zd-R (Ω cm2) | CPEdl (Ω-1 cm-2 s-n) | Rct (Ω cm2) | Rp (Ω cm2) |
---|---|---|---|---|---|---|---|
316SS | 21.12 | -- | -- | -- | 6.91 × 10 -5 | 9.69 × 10 4 | 9.69 × 10 4 |
Ni50Nb50 | 22.28 | 1.65 × 10 -5 | 1.88 × 10 6 | -- | 2.70 × 10 -6 | 4.23 × 10 6 | 6.11 × 10 6 |
Ni60Nb40 | 19.31 | 2.34 × 10 -5 | 7.68 × 10 5 | -- | 8.54 × 10 -6 | 1.61 × 10 6 | 2.38 × 10 6 |
Ni50Nb50/ Ni60Nb40 | 20.11 | 1.07 × 10 -9 | 5.52 × 10 4 | 5.25 × 10 5 | 6.92 × 10 -6 | 6.09 × 10 6 | 6.67 × 10 6 |
Fig. 8. SEM images of the (a) Ni50Nb50, (b) Ni60Nb40, (c) Ni50Nb50/Ni60Nb40 MGCs and the uncoated (d) 316SS after immersion; 3D AFM images of (e) Ni50Nb50, (f) Ni60Nb40 and (g) Ni50Nb50/Ni60Nb40 MGCs after immersion.
Fig. 9. The decomposed Nb 3d, Ni 2p3/2 and O 1s XPS spectra of (a, b, c) Ni50Nb50, (d, e, f) Ni60Nb40 and (g, h, i) Ni50Nb50/Ni60Nb40 MGCs after 32 days immersion.
Fig. 10. Percentages of the component peaks of Nb 3d, Ni 2p and O 1s at the surface of Ni50Nb50, Ni60Nb40 and Ni50Nb50/Ni60Nb40 MGCs after immersion process.
[1] | Y.Z. Li, X. Wang, G.A. Zhang, Corros. Sci. (2019), 108290. |
[2] |
J.A. Syed, S. Tang, X. Meng, Sci. Rep. 7 (2017) 4403.
DOI URL |
[3] |
J.H. Huang, K.L. Kuo, G.P. Yu, Surf. Coat. Technol. 358 (2019) 308-319.
DOI URL |
[4] |
Y.J. Yang, Z.P. Zhang, Z.S. Jin, W.C. Sun, C.Q. Xia, M.Z. Ma, X.Y. Zhang, G. Li, R.P. Liu, J. Alloys. Compd. 782 (2019) 927-935.
DOI URL |
[5] |
Z. Qiu, Z. Li, H. Fu, H. Zhang, Z. Zhu, A. Wang, H. Li, L. Zhang, H. Zhang, J. Mater. Sci. Technol. 46 (2020) 33-43.
DOI URL |
[6] |
A.A. Burkov, P.G. Chigrin, Surf. Coat. Technol. 351 (2018) 68-77.
DOI URL |
[7] |
M. Fakoori Hasanabadi, F. Malek Ghaini, M. Ebrahimnia, H.R. Shahverdi, Surf. Coat. Technol. 270 (2015) 95-101.
DOI URL |
[8] |
Y. Zhang, J. Zhang, Q. Yan, L. Zhang, M. Wang, B. Song, Y. Shi, Scr. Mater. 148 (2018) 20-23.
DOI URL |
[9] |
M. Gao, W. Lu, B. Yang, S. Zhang, J. Wang, J. Alloys. Compd. 735 (2018) 1363-1373.
DOI URL |
[10] | J. Cheng, B. Wang, Q. Liu, X. Liang, J. Alloys. Compd. 716 (2017). |
[11] | A. Obeydavi, A. Shafyei, A. Rezaeian, P. Kameli, J.W. Lee, J. Non-Cryst. Solids 527 (2020), 119718. |
[12] |
P. Jia, R. Huang, S. Zhang, E. Wang, J. Yao, J. Mater. Sci. Technol. 53 (2020) 32-36.
DOI URL |
[13] |
S. Korkmaz, İ.A. Kariper, J. Non-Cryst. Solids 527 (2020), 119753.
DOI URL |
[14] |
H.S. Chou, J.C. Huang, L.W. Chang, Surf. Coat. Technol. 205 (2010) 587-590.
DOI URL |
[15] |
Y. Li, J. Xu, J. Mater. Sci. Technol. 33 (2017) 1278-1288.
DOI URL |
[16] |
Z.M. Wang, J. Zhang, J.Q. Wang, Intermetallics 18 (2010) 2077-2082.
DOI URL |
[17] | J. Wu, S.D. Zhang, W.H. Sun, Y. Gao, J.Q. Wang, Corros. Sci. (2018) 161-173. |
[18] |
C. Li, D. Chen, W. Chen, L. Wang, D. Luo, Corros. Sci. 84 (2014) 96-102.
DOI URL |
[19] |
R. Li, Z. Li, J. Huang, P. Zhang, Y. Zhu, Appl. Surf. Sci. 257 (2011) 3554-3557.
DOI URL |
[20] |
R. Li, Z. Li, Y. Zhu, K. Qi, J. Alloys. Compd. 580 (2013) 327-331.
DOI URL |
[21] |
J. Jayaraj, Y.C. Kim, K.B. Kim, H.K. Seok, E. Fleury, J. Alloys. Compd. 434-435 (2007) 237-239.
DOI URL |
[22] |
X. Ma, N. Zhen, J. Guo, Q. Li, C. Chang, Y. Sun, J. Non-Cryst. Solids 443 (2016) 91-96.
DOI URL |
[23] |
C. Qin, K. Asami, H. Kimura, W. Zhang, A. Inoue, Electrochim. Acta 54 (2009) 1612-1617.
DOI URL |
[24] |
J. Jayaraj, D. Nanda Gopala Krishna, C. Mallika, U. Kamachi Mudali, Mater. Chem. Phys. 151 (2015) 318-329.
DOI URL |
[25] |
Y. Li, S. Wang, X. Wang, M. Yin, W. Zhang, J. Mater. Sci. Technol. 43 (2020) 32-39.
DOI URL |
[26] |
K.V. Reddy, S. Pal, J. Non-Cryst. Solids 471 (2017) 243-250.
DOI URL |
[27] |
Z.M. Wang, J. Zhang, X.C. Chang, W.L. Hou, J.Q. Wang, Corros. Sci. 52 (2010) 1342-1350.
DOI URL |
[28] |
B.S. Lou, T.Y. Lin, W.T. Chen, J.W. Lee, Thin Solid Films 691 (2019), 137615.
DOI URL |
[29] |
J. Wu, Y. Pan, X. Li, X. Wang, Mater. Des. 75 (2015) 32-39.
DOI URL |
[30] |
C. Poddar, S. Ningshen, J. Jayaraj, J. Alloys. Compd. 813 (2020), 152172.
DOI URL |
[31] |
C. Poddar, J. Jayaraj, S. Ningshen, U.K. Mudali, Appl. Surf. Sci. 479 (2019) 430-439.
DOI URL |
[32] |
C. Poddar, J. Jayaraj, S. Ningshen, J. Alloys. Compd. 783 (2019) 680-686.
DOI URL |
[33] |
C. Poddar, J. Jayaraj, S. Amirthapandian, S. Ningshen, Intermetallics 113 (2019), 106571.
DOI URL |
[34] |
Z. Lei, Q. Zhang, X. Zhu, D. Ma, F. Ma, Z. Song, Y.Q. Fu, Appl. Surf. Sci. 431 (2018) 170-176.
DOI URL |
[35] |
H. Zhang, G. Lin, M. Hou, L. Hu, Z. Han, Y. Fu, Z. Shao, B. Yi, J. Power Sources 198 (2012) 176-181.
DOI URL |
[36] |
S. Li, F. Wang, J.L. Li, P. Huang, J. Non-Cryst. Solids 535 (2020), 119996.
DOI URL |
[37] |
K. Kosiba, D. Şopu, S. Scudino, L. Zhang, J. Bednarcik, S. Pauly, Int. J. Plasticity 119 (2019), 156-170.
DOI URL |
[38] |
A. Etiemble, C. Der Loughian, M. Apreutesei, C. Langlois, S. Cardinal, J.M. Pelletier, J.F. Pierson, P. Steyer, J. Alloys. Compd. 707 (2017) 155-161.
DOI URL |
[39] |
K.M. Govindaraju, V.C.A. Prakash, Colloids Surf. A 465 (2015) 11-19.
DOI URL |
[40] |
M. Łępicka, M. Grądzka-Dahlke, D. Pieniak, K. Pasierbiewicz, A. Niewczas, Wear 382-383 (2017) 62-70.
DOI URL |
[41] |
H. Farnoush, J. Aghazadeh Mohandesi, H. Çimenoğlu, J. Mech. Behav. Biomed. 46 (2015) 31-40.
DOI URL |
[42] |
S.Y. Liu, Q.P. Cao, Q. Yu, X.D. Wang, D.X. Zhang, J.Z. Jiang, J. Non-Cryst. Solids 510 (2019) 112-120.
DOI |
[43] |
Z. Cao, H. Wang, J. Qu, M. Zhang, X. Wang, W. Xia, Chem. Eng. J. 320 (2017) 588-607.
DOI URL |
[44] |
K. Zhang, S. Sharma, ACS Sustain. Chem. Eng. 5 (2017) 277-286.
DOI URL |
[45] |
S.H. Lee, N. Kakati, J. Maiti, S.H. Jee, D.J. Kalita, Y.S. Yoon, Thin Solid Films 529 (2013) 374-379.
DOI URL |
[46] |
J. Xu, C. Zhuo, D. Han, J. Tao, L. Liu, S. Jiang, Corros. Sci. 51 (2009) 1055-1068.
DOI URL |
[47] |
Z.B. Zheng, Y.G. Zheng, W.H. Sun, J.Q. Wang, Corros. Sci. 76 (2013) 337-347.
DOI URL |
[48] |
H. Tian, W. Li, A. Liu, X. Gao, P. Han, R. Ding, C. Yang, D. Wang, Corros. Sci. 131 (2018) 1-16.
DOI URL |
[49] |
H. Lu, Y. Zhou, S. Vongehr, K. Hu, X. Meng, Synth. Met. 161 (2011) 1368-1376.
DOI URL |
[50] |
S. Qiu, W. Li, W. Zheng, H. Zhao, L. Wang, ACS Appl. Mater. Interfaces 9 (2017) 34294-34304.
DOI URL |
[51] |
Y. Chen, X.H. Wang, J. Li, J.L. Lu, F.S. Wang, Corros. Sci. 49 (2007) 3052-3063.
DOI URL |
[52] |
M. Mrad, Y.B. Amor, L. Dhouibi, M. Montemor, Surf. Coat. Technol. 337 (2018) 1-11.
DOI URL |
[53] |
Y. Wang, S. Zhang, Z. Lu, L. Wang, W. Li, Corros. Sci. 142 (2018) 249-257.
DOI URL |
[54] |
Y.J. Ren, J. Chen, C.L. Zeng, J. Power Sources 195 (2010) 1914-1919.
DOI URL |
[55] |
T. Zhao, Y. Li, Y. Xiang, X. Zhao, T. Zhang, Surf. Coat. Technol. 205 (2011) 4404-4410.
DOI URL |
[56] |
H.Z. Li, X. Zhao, J. Xu, Mater. Sci. Eng. C 56 (2015) 205-214.
DOI URL |
[57] |
B.X. Huang, K. Wang, J.S. Church, Y.S. Li, Electrochim. Acta 44 (1999) 2571-2577.
DOI URL |
[58] |
D.G. Li, Ultrason. Sonochem. 27 (2015) 296-306.
DOI PMID |
[59] |
B. Li, W. Zhang, D. Li, Y. Huan, J. Dong, Appl. Surf. Sci. 458 (2018) 305-318.
DOI URL |
[60] |
B. Li, W. Zhang, Ceram. Int. 44 (2018) 19907-19918.
DOI URL |
[61] |
D.P. Wang, S.L. Wang, J.Q. Wang, Corros. Sci. 59 (2012) 88-95.
DOI URL |
[1] | Mingyue Sun, Bin Xu, Bijun Xie, Dianzhong Li, Yiyi Li. Leading manufacture of the large-scale weldless stainless steel forging ring: Innovative approach by the multilayer hot-compression bonding technology [J]. J. Mater. Sci. Technol., 2021, 71(0): 84-86. |
[2] | Yuan-Yun Zhao, Feng Qian, Chengliang Zhao, Chunxiao Xie, Jianguo Wang, Chuntao Chang, Yanjun Li, Lai-Chang Zhang. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses [J]. J. Mater. Sci. Technol., 2021, 70(0): 205-213. |
[3] | Zhuwei Lv, Chenchen Yuan, Haibo Ke, Baolong Shen. Defects activation in CoFe-based metallic glasses during creep deformation [J]. J. Mater. Sci. Technol., 2021, 69(0): 42-47. |
[4] | M.C. Ri, D.W. Ding, Y.H. Sun, W.H. Wang. Microstructure change in Fe-based metallic glass and nanocrystalline alloy induced by liquid nitrogen treatment [J]. J. Mater. Sci. Technol., 2021, 69(0): 1-6. |
[5] | Jing Wang, Lu Han, Xiaohu Li, Dongguang Liu, Laima Luo, Yuan Huang, Yongchang Liu, Zumin Wang. Supermodulus effect by grain-boundary wetting in nanostructured multilayers [J]. J. Mater. Sci. Technol., 2021, 65(0): 202-209. |
[6] | A.C. Bouali, N.M. André, M.R. Silva Campos, M. Serdechnova, J.F. dos Santos, S.T. Amancio-Filho, M.L. Zheludkevich. Influence of LDH conversion coatings on the adhesion and corrosion protection of friction spot-joined AA2024-T3/CF-PPS [J]. J. Mater. Sci. Technol., 2021, 67(0): 197-210. |
[7] | Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 145-150. |
[8] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
[9] | Bailiang Wang, Jiahong Zeng, Yishun Guo, Lin Liang, Yingying Jin, Siyuan Qian, Renjie Miao, Liang Hu, Fan Lu. Reversible grafting of antibiotics onto contact lens mediated by labile chemical bonds for smart prevention and treatment of corneal bacterial infections [J]. J. Mater. Sci. Technol., 2021, 61(0): 169-175. |
[10] | Bowen Zhao, Zhengwang Zhu, Xin Dong Qin, Zhengkun Li, Haifeng Zhang. Highly efficient and stable CuZr-based metallic glassy catalysts for azo dye degradation [J]. J. Mater. Sci. Technol., 2020, 46(0): 88-97. |
[11] | Wenhui Yao, Liang Wu, Guangsheng Huang, Bin Jiang, Andrej Atrens, Fusheng Pan. Superhydrophobic coatings for corrosion protection of magnesium alloys [J]. J. Mater. Sci. Technol., 2020, 52(0): 100-118. |
[12] | Binbin Wang, Liangshun Luo, Fuyu Dong, Liang Wang, Hongying Wang, Fuxin Wang, Lei Luo, Baoxian Su, Yanqing Su, Jingjie Guo, Hengzhi Fu. Impact of hydrogen microalloying on the mechanical behavior of Zr-bearing metallic glasses: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2020, 45(0): 198-206. |
[13] | Kim Jeong Tae, Hong Sung Hwan, Park Jin Man, Jürgen Eckert, Kim Ki Buem. New para-magnetic (CoFeNi)50(CrMo)50-x(CB)x (x = 20, 25, 30) non-equiatomic high entropy metallic glasses with wide supercooled liquid region and excellent mechanical properties [J]. J. Mater. Sci. Technol., 2020, 43(0): 135-143. |
[14] | Peng Jia, Ruiwen Huang, Suode Zhang, Engang Wang, Jiahao Yao. Synthesis of Ag-Cr thin film metallic glasses with enhanced sulfide-resistance [J]. J. Mater. Sci. Technol., 2020, 53(0): 32-36. |
[15] | Arash Afshar, Dorina Mihut. Enhancing durability of 3D printed polymer structures by metallization [J]. J. Mater. Sci. Technol., 2020, 53(0): 185-191. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||