J. Mater. Sci. Technol. ›› 2021, Vol. 95: 70-77.DOI: 10.1016/j.jmst.2021.04.016
• Research Article • Previous Articles Next Articles
Yuxi Rena,b, Shengli Zhub,c,d,e,**(), Yanqin Liangb,c, Zhaoyang Lib,c, Shuilin Wub,c, Chuntao Changa,*(
), Shuiyuan Luoe, Zhenduo Cuib,*(
)
Received:
2021-02-26
Revised:
2021-04-07
Accepted:
2021-04-14
Published:
2021-12-30
Online:
2021-05-25
Contact:
Shengli Zhu,Chuntao Chang,Zhenduo Cui
About author:
zdcui@tju.edu.cn (Z. Cui).Yuxi Ren, Shengli Zhu, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo, Zhenduo Cui. Hierarchical Ni3S4@MoS2 nanocomposites as efficient electrocatalysts for hydrogen evolution reaction[J]. J. Mater. Sci. Technol., 2021, 95: 70-77.
Fig. 4. (a) XRD patterns of bare carbon cloth, Ni3S4/CC, MoS2/CC, Ni3S4@MoS2/CC-1, Ni3S4@MoS2-2, Ni3S4@MoS2-3, Ni3S4@MoS2-4, (b) Raman spectrum of Ni3S4@MoS2/CC with different Mo content.
Fig. 5. XPS spectra of (a) Ni3S4@MoS2, Ni3S4 and MoS2, (b) Mo 3d of Ni3S4@MoS2 and MoS2, (c) S 2p of Ni3S4@MoS2, Ni3S4 and MoS2, (d) Ni 2p of Ni3S4@MoS2 and Ni3S4.
Fig. 6. (a) LSV curves, (b) Tafel slopes and (c) Nyquist plots of Ni3S4@MoS2/CC-1, Ni3S4@MoS2/CC-2, Ni3S4@MoS2/CC-3, Ni3S4@MoS2/CC-4, Ni3S4/CC and MoS2/CC, (d) Stability of Ni3S4@MoS2/CC-3.
[1] |
G. Jia, Y. Hu, Q. Qian, Y. Yao, S. Zhang, Z. Li, Z. Zou, ACS Appl. Mater. Interfaces 8 (2016) 14527-14534.
DOI URL |
[2] |
J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang, Q. Chen, Nat. Commun. 8 (2017) 14969.
DOI URL |
[3] | C. Lei, S. Lyu, J. Si, B. Yang, Z. Li, L. Lei, Z. Wen, G. Wu, Y. Hou, Chem Cat Chem 11 (2019) 5855-5874. |
[4] |
Z.H. Xue, H. Su, Q.Y. Yu, B. Zhang, H.H. Wang, X.H. Li, J.S. Chen, Adv. Energy Mater. 7 (2017) 1602355.
DOI URL |
[5] |
Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu, Q. Yuan, L. Samad, X. Wang, Y. Wang, Z. Zhang, P. Zhang, X. Cao, B. Song, S. Jin, J. Am. Chem. Soc. 138 (2016) 7965-7972.
DOI URL |
[6] |
D. Yang, L. Cao, L. Feng, J. Huang, K. Kajiyoshi, Y. Feng, Q. Liu, W. Li, L. Feng, G. Hai, Appl. Catal. B-Environ. 257 (2019) 117911.
DOI URL |
[7] |
H. Yang, Z. Chen, P. Guo, B. Fei, R. Wu, Appl. Catal. B-Environ. 261 (2020) 118240.
DOI URL |
[8] |
C. Qiu, J. Jiang, L. Ai, ACS Appl. Mater. Interfaces 8 (2016) 945-951.
DOI URL |
[9] |
Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 133 (2011) 7296-7299.
DOI URL |
[10] | S. Gupta, N. Patel, R. Fernandes, S. Hanchate, A. Miotello, D.C. Kothari, Elec-trochim. Acta 232 (2017) 64-71. |
[11] |
L. Wang, Z. Li, K. Wang, Q. Dai, C. Lei, B. Yang, Q. Zhang, L. Lei, M.K.H. Leung, Y. Hou, Nano Energy 74 (2020) 104850.
DOI URL |
[12] |
K.R.G. Lim, A.D. Handoko, S.K. Nemani, B. Wyatt, H.-.Y. Jiang, J. Tang, B. Anasori, Z.W. Seh, ACS Nano 14 (2020) 10834-10864.
DOI URL |
[13] |
P. Du, R. Eisenberg, Energy Environ. Sci. 5 (2012) 6012.
DOI URL |
[14] |
W. Yuan, Q. Huang, X. Yang, Z. Cui, S. Zhu, Z. Li, S. Du, N. Qiu, Y. Liang, ACS Appl. Mater. Interfaces 10 (2018) 40500-40508.
DOI URL |
[15] |
J. Shi, F. Qiu, W. Yuan, M. Guo, C. Yuan, Z.H. Lu, Electrochim. Acta 329 (2020) 135185.
DOI URL |
[16] |
J. Xu, Z. Liu, Z. Wei, S. Zhang, C. Guo, M. He, Electrochim. Acta 349 (2020) 136417.
DOI URL |
[17] |
Y. Liang, X. Sun, A.M. Asiri, Y. He, Nanotechnology 27 (2016) 12LT01.
DOI URL |
[18] |
M. Yao, B. Sun, L. He, N. Wang, W. Hu, S. Komarneni, ACS Sustain. Chem. Eng. 7 (2019) 5430-5439.
DOI URL |
[19] |
Y. Zhang, S. Chao, X. Wang, H. Han, Z. Bai, L. Yang, Electrochim. Acta 246 (2017) 380-390.
DOI URL |
[20] |
J. Lao, D. Li, C. Jiang, C. Luo, R. Qi, H. Lin, R. Huang, G.I.N. Waterhouse, H. Peng, Nanoscale 12 (2020) 10158-10165.
DOI URL |
[21] |
M.A Lukowski. A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, J. Am. Chem. Soc. 135 (2013) 10274-10277.
DOI PMID |
[22] | Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Science (2017) 355. |
[23] |
J. Di, C. Yan, A.D. Handoko, Z.W. Seh, H. Li, Z. Liu, Mater. Today 21 (2018) 749-770.
DOI URL |
[24] |
Y. Luo, D. Huang, M. Li, X. Xiao, W. Shi, M. Wang, J. Su, Y. Shen, Electrochim. Acta 219 (2016) 187-193.
DOI URL |
[25] |
R. Luo, M. Luo, Z. Wang, P. Liu, S. Song, X. Wang, M. Chen, Nanoscale 11 (2019) 7123-7128.
DOI URL |
[26] |
J. Zhang, L. Zhao, A. Liu, X. Li, H. Wu, C. Lu, Electrochim. Acta 182 (2015) 652-658.
DOI URL |
[27] |
P. Gnanasekar, D. Periyanagounder, J. Kulandaivel, Nanoscale 11 (2019) 2439-2446.
DOI PMID |
[28] |
S. Lu, W. Wang, S. Yang, W. Chen, Z. Zhuang, W. Tang, C. He, J. Qian, D. Ma, Y. Yang, S. Huang, Nano Res. 12 (2019) 3116-3122.
DOI URL |
[29] |
F. Li, L. Zhang, J. Li, X. Lin, X. Li, Y. Fang, J. Huang, W. Li, M. Tian, J. Jin, R. Li, J. Power Sources 292 (2015) 15-22.
DOI URL |
[30] |
Y. Zheng, Y. Jiao, A. Vasileff, S. Qiao, Angew. Chem. 57 (2018) 7568-7579.
DOI URL |
[31] |
G. Zhao, K. Rui, S.X. Dou, W. Sun, Adv. Funct. Mater. 28 (2018) 1803291.
DOI URL |
[32] |
J.X. Feng, J.Q. Wu, Y.X. Tong, G.R. Li, J. Am. Chem. Soc. 140 (2018) 610-617.
DOI URL |
[33] |
Z. Xing, X. Yang, A.M. Asiri, X. Sun, ACS Appl. Mater. Interfaces 8 (2016) 14521-14526.
DOI URL |
[34] |
K. Wang, X. Wang, Z. Li, B. Yang, M. Ling, X. Gao, J. Lu, Q. Shi, L. Lei, G. Wu, Y. Hou, Nano Energy 77 (2020) 105162.
DOI URL |
[35] |
S. Niu, Y. Fang, J. Zhou, J. Cai, Y. Zang, Y. Wu, J. Ye, Y. Xie, Y. Liu, X. Zheng, W. Qu, X. Liu, G. Wang, Y. Qian, J. Mater. Chem. A 7 (2019) 10924-10929.
DOI URL |
[36] | J. Yuan, X. Cheng, H. Wang, C. Lei, S. Pardiwala, B. Yang, Z. Li, Q. Zhang, L. Lei, S. Wang, Y. Hou, Nano-Micro Lett. 12 (2020). |
[37] |
A. Long, W. Li, M. Zhou, W. Gao, B. Liu, J. Wei, X. Zhang, H. Liu, Y. Liu, X. Zeng, J. Mater. Chem. A 7 (2019) 21514-21522.
DOI URL |
[38] | F. Cheng, Z. Li, L. Wang, B. Yang, J. Lu, L. Lei, T. Ma, Y. Hou, Mater. Horiz. 12 (2021). |
[39] |
K. Wan, J. Luo, C. Zhou, T. Zhang, J. Arbiol, X. Lu, B.W. Mao, X. Zhang, J. Fransaer, Adv. Funct. Mater. 29 (2019) 1900315.
DOI URL |
[40] |
T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 317 (2007) 100-102.
PMID |
[41] |
B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Nørskov, J. Am. Chem. Soc. 127 (2005) 5308-5309.
PMID |
[42] |
J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X.W. Lou, Y. Xie, Adv. Mater. 25 (2013) 5807-5813.
DOI URL |
[43] |
J. Cao, J. Zhou, Y. Zhang, Y. Wang, X. Liu, ACS Appl. Mater. Interfaces 10 (2018) 1752-1760.
DOI URL |
[44] |
Z. Gao, C. Chen, J. Chang, L. Chen, P. Wang, D. Wu, F. Xu, K. Jiang, Chem. Eng. J. 343 (2018) 572-582.
DOI URL |
[45] | C. Manjunatha, N. Srinivasa, S.K. Chaitra, M. Sudeep, R.C. Kumar, S. Ashoka, Mater. Today Energy 16 (2020) 100414. |
[46] |
M. Woldetinsay, T. Refera, F. Olu, T. Maiyalagan, Mater. Chem. Phys. 251 (2020) 123106.
DOI URL |
[47] | Q. Liu, Z. Xue, B. Jia, Q. Liu, K. Liu, Y. Lin, M. Liu, Y. Li, G. Li, Small (2020) e2002482. |
[48] |
X. Xin, Y. Song, S. Guo, Y. Zhang, B. Wang, J. Yu, X. Li, Appl. Catal. B-Environ. 269 (2020) 118773.
DOI URL |
[49] |
M. Zheng, K. Guo, W.-.J. Jiang, T. Tang, X. Wang, P. Zhou, J. Du, Y. Zhao, C. Xu, J.-.S. Hu, Appl. Catal. B-Environ. 244 (2019) 1004-1012.
DOI URL |
[50] |
Y. Liu, S. Jiang, S. Li, L. Zhou, Z. Li, J. Li, M. Shao, Appl. Catal. B-Environ. 247 (2019) 107-114.
DOI URL |
[51] |
Y. Yang, K. Zhang, H. Lin, X. Li, H.C. Chan, L. Yang, Q. Gao, ACS Catal. 7 (2017) 2357-2366.
DOI URL |
[52] |
Y. Zhou, H. Liu, S. Zhu, Y. Liang, S. Wu, Z. Li, Z. Cui, C. Chang, X. Yang, A. Inoue, ACS Appl. Energy Mater. 2 (2019) 7913-7922.
DOI URL |
[53] |
L. Zeng, K. Sun, X. Wang, Y. Liu, Y. Pan, Z. Liu, D. Cao, Y. Song, S. Liu, C. Liu, Nano Energy 51 (2018) 26-36.
DOI URL |
[54] |
T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Sci Rep 5 (2015) 13801.
DOI PMID |
[55] |
F. Cheng, L. Wang, H. Wang, C. Lei, B. Yang, Z. Li, Q. Zhang, L. Lei, S. Wang, Y. Hou, Nano Energy 71 (2020) 104621.
DOI URL |
[56] |
M. Starzak, M. Mathlouthi, Food Chem. 82 (2003) 3-22.
DOI URL |
[57] |
P. Wang, W. Chen, J. Wang, J. Tang, Y. Shi, F. Wan, Anal. Chem. 92 (2020) 5969-5977.
DOI URL |
[58] |
J. Wang, Z. Zhang, H. Song, B. Zhang, J. Liu, X. Shai, L. Miao, Adv. Funct. Mater. 31 (2020) 2008578.
DOI URL |
[59] | B. Tang, Z. Yu, Y. Zhang, C. Tang, H. Seng, Z. Seh, Y. Zhang, S.J. Pennycook, H. Gong, W. Yang, J. Mater. Chem. A 7(2019). |
[60] |
K.R.G. Lim, A.D. Handoko, L.R. Johnson, X. Meng, M. Lin, G.S. Subramanian, B. Anasori, Y. Gogotsi, A. Vojvodic, Z.W. Seh, ACS Nano 14 (2020) 16140-16155.
DOI URL |
[1] | Jingfa Li, Jian Zhou, Qihao Zhou, Xin Wang, Cong Guo, Min Li. Promoting the Na+-storage of NiCo2S4 hollow nanospheres by surfacing Ni-B nanoflakes [J]. J. Mater. Sci. Technol., 2021, 82(0): 114-121. |
[2] | Zhou Zhou, Chaoying Ding, Wenchao Peng, Yang Li, Fengbao Zhang, Xiaobin Fan. One-step fabrication of two-dimensional hierarchical Mn2O3@graphene composite as high-performance anode materials for lithium ion batteries [J]. J. Mater. Sci. Technol., 2021, 80(0): 13-19. |
[3] | Hui Wang, Jiaqiang Liu, Chengtao Wang, Steve Guofang Shen, Xudong Wang, Kaili Lin. The synergistic effect of 3D-printed microscale roughness surface and nanoscale feature on enhancing osteogenic differentiation and rapid osseointegration [J]. J. Mater. Sci. Technol., 2021, 63(0): 18-26. |
[4] | Zibing An, Shengcheng Mao, Yinong Liu, Hao Zhou, Yadi Zhai, Zhiyong Tian, Cuixiu Liu, Ze Zhang, Xiaodong Han. Hierarchical grain size and nanotwin gradient microstructure for improved mechanical properties of a non-equiatomic CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 92(0): 195-207. |
[5] | Chang Feng, Zhuoyuan Chen, Jing Tian, Jiangping Jing, Li Ma, Jian Hou. Fabrication of three-dimensional WO3/ZnWO4/ZnO multiphase heterojunction system with electron storage capability for significantly enhanced photoinduced cathodic protection performance [J]. J. Mater. Sci. Technol., 2021, 90(0): 183-193. |
[6] | Jing Xu, Zhouping Wang, Yongfa Zhu. Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering [J]. J. Mater. Sci. Technol., 2020, 49(0): 133-143. |
[7] | Jin Bai, Xiao Chen, Emilia Olsson, Huimin Wu, Shiquan Wang, Qiong Cai, Chuanqi Feng. Synthesis of Bi2S3/carbon nanocomposites as anode materials for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 50(0): 92-102. |
[8] | Hamid Tajizadegan, Majid Jafari, Mehdi Rashidzadeh, Reza Ebrahimi-Kahrizsangi,Omid Torabi. Facile Growth of Porous Hierarchical Structure of ZnO Nanosheets on Alumina Particles via Heterogeneous Precipitation [J]. J. Mater. Sci. Technol., 2013, 29(10): 915-918. |
[9] | Xiaosheng FANG, Ujjal K.Gautamy, Yoshio B, O, Dmitri GOLBERG. One-dimensional ZnS-based Hetero-, Core/shell and Hierarchical Nanostructures [J]. J Mater Sci Technol, 2008, 24(04): 520-528. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||