J. Mater. Sci. Technol. ›› 2021, Vol. 82: 114-121.DOI: 10.1016/j.jmst.2020.12.021
• Research Article • Previous Articles Next Articles
Jingfa Lia,b,*(), Jian Zhoub, Qihao Zhoub, Xin Wanga, Cong Guoa, Min Lia,b,*(
)
Received:
2020-08-28
Revised:
2020-12-14
Accepted:
2020-12-18
Published:
2021-01-22
Online:
2021-01-22
Contact:
Jingfa Li,Min Li
About author:
liminbuaa@126.com (M. Li).Jingfa Li, Jian Zhou, Qihao Zhou, Xin Wang, Cong Guo, Min Li. Promoting the Na+-storage of NiCo2S4 hollow nanospheres by surfacing Ni-B nanoflakes[J]. J. Mater. Sci. Technol., 2021, 82: 114-121.
Fig. 3. Structure investigation of NiCo2S4 sample. (a-c) FESEM images with different magnifications. (d-g) TEM and high resolution TEM images. (h-k) STEM-EDX elemental mappings showing the uniform spatial distribution of (i) Ni, (j) Co, and (k) S.
Fig. 4. Structure investigation of NiCo2S4@Ni-B sample. (a-b) FESEM images with different magnification. (c-e) TEM and high resolution TEM images. (f-i) STEM-EDX elemental mappings showing the uniform spatial distribution of (f) Ni, (g) Co, (k) S and (i) B elements.
Fig. 6. Electrochemical performances for SIBs in the voltage range of 0.01 to 3.0 V. (a) CV curves of NiCo2S4@Ni-B composites at a sweep rate of 0.1 mV s-1. Selected discharge-charge curves of 1st, 2nd, 3rd, 10th, 20th, and 30th cycles at 500 mA g-1 of (b) NiCo2S4@Ni-B composites and (c) bare NiCo2S4 hollow nanospheres. (d) Cycling performance of NiCo2S4@Ni-B composites and bare NiCo2S4 hollow nanospheres at 500 mA g-1.
Fig. 7. Electrochemical performances for SIBs in the voltage range of 0.6 to 3.0 V. (a) CV curves of NiCo2S4@Ni-B composites at a sweep rate of 0.1 mV s-1. Selected discharge-charge curves of 1st, 2nd, 3rd, 10th, 20th, and 30th cycles at 500 mA g-1 of (b) NiCo2S4@Ni-B composites and (c) bare NiCo2S4 hollow microspheres. (d) Cycling performance of NiCo2S4@Ni-B composites and bare NiCo2S4 hollow microspheres at 500 mA g-1. (e) Long-term stabilities of these two samples at 1.0 A g-1.
Fig. 8. (a) Rate performances in the potential window of 0.6-3.0 V and (b) electrochemical impedance spectrum (EIS) of the NiCo2S4@Ni-B and NiCo2S4 electrodes (Rs: electric resistance, Rct: charge transfer resistance at the surface of electroactive materials, CPEct: capacitance, and W: Warburg impedance). (c) CV curves of the NiCo2S4@Ni-B electrode at different scan rates and (d) b-value analysis using the relationship between the cathodic and anodic peak currents, and sweep rates ranging from 0.1 to 1.0 mV s-1. (e) Separation of the capacitive and diffusion-controlled current contribution at 0.5 mV s-1. (f) Contribution ratio of the capacitive and diffusion-controlled charges at different scan rates.
[1] | H. Shang, Z. Zuo, L. Li, F. Wang, H. Liu, Y. Li, Y. Li, Angew. Chem. -Int.Edit. 57 (2018) 774-778. |
[2] |
S.F. Huang, Z.P. Li, B. Wang, J.J. Zhang, Z.Q. Peng, R.J. Qi, J. Wang, Y.F. Zhao, Adv. Funct. Mater. 28 (2018), 1706294.
DOI URL |
[3] |
G.L. Xia, J.W. Su, M.S. Li, P. Jiang, Y. Yang, Q.W. Chen, J. Mater. Chem. A 5 (2017) 10321-10327.
DOI URL |
[4] |
J. Zhang, H.Y. Zhong, C. Zheng, Y. Xia, C. Liang, H. Huang, Y.P. Gan, X.Y. Tao, W.K. Zhang, J. Power Sources 391 (2018) 73-79.
DOI URL |
[5] | Z.Y. Sang, X. Yan, L. Wen, D. Su, Z.H. Zhao, Y. Liu, H.M. Ji, J. Liang, S.X. Dou, Energy Storage Mater. 25 (2020) 876-884. |
[6] |
X.J. Wang, K. Chen, G. Wang, X.J. Liu, H. Wang, ACS Nano 11 (2017) 11602-11616.
DOI URL |
[7] |
M.Z. Chen, W.B. Hua, J. Xiao, D. Cortie, W.H. Chen, E.H. Wang, Z. Hu, Q.F. Gu, X.L. Wang, S. Indris, S.L. Chou, S.X. Dou, Nat. Commun. 10 (2019) 1480.
DOI URL |
[8] |
J. Sun, H.W. Lee, M. Pasta, H.T. Yuan, G.Y. Zheng, Y.M. Sun, Y.Z. Li, Y. Cui, Nat. Nanotechnol. 10 (2015) 980-985.
DOI URL |
[9] |
J.F. Li, J. Zhao, R. Tang, Q. Chen, Z.H. Niu, M. Li, C. Guo, J. Su, L. Zhang, J. Power Sources 449 (2020), 227517.
DOI URL |
[10] |
Y.J. Song, H. Li, L. Yang, D.X. Bai, F.Z. Zhang, S.L. Xu, ACS Appl. Mater. Interfaces 9 (2017) 42742-42750.
DOI URL |
[11] |
L.F. Shen, L. Yu, H.B. Wu, X.Y. Yu, X.G. Zhang, X.W. Lou, Nat. Commun. 6 (2015) 6694.
DOI URL |
[12] |
T. Tang, S. Cui, W. Chen, H. Hou, L. Mi, Nanoscale 11 (2019) 1728-1736.
DOI URL |
[13] |
R.L. Bian, D. Song, W.P. Si, T. Zhang, Y.X. Zhang, P.Y. Lu, F. Hou, J. Liang, ChemElectroChem 7 (2020) 3663-3669.
DOI URL |
[14] |
Y.F. Yuan, L.W. Ye, D. Zhang, F. Chen, M. Zhu, L.N. Wang, S.M. Yin, G.S. Cai, S.Y. Guo, Electrochim. Acta 299 (2019) 289-297.
DOI |
[15] |
J.Y. Zhang, K.M. Song, L.W. Mi, C.T. Liu, X.M. Feng, J.M. Zhang, W.H. Chen, C.Y. Shen, J. Phys. Chem. Lett. 11 (2020) 1435-1442.
DOI PMID |
[16] |
Z.W. Zhang, Z.Q. Li, L.W. Yin, New J. Chem. 42 (2018) 1467-1476.
DOI URL |
[17] | S.J. Li, P. Ge, F. Jiang, H.L. Shuai, W. Xu, Y.L. Jiang, Y. Zhang, J.G. Hu, H.S. Hou, X.B. Ji, Energy Storage Mater. 16 (2019) 267-280. |
[18] |
S.J. Peng, L.L. Li, C.C. Li, H.T. Tan, R. Cai, H. Yu, S. Mhaisalkar, M. Srinivasan, S. Ramakrishna, Q.Y. Yan, Chem. Commun. 49 (2013) 10178-10180.
DOI URL |
[19] | Y. Xiao, S.H. Lee, Y.K. Sun, Adv. Energy Mater. 6 (2016), 1601329. |
[20] |
S.H. Choi, Y.C. Kang, Nanoscale 8 (2016) 4209-4216.
DOI URL |
[21] |
C.P. Yang, S. Xin, Y.X. Yin, H. Ye, J. Zhang, Y.G. Guo, Angew. Chem. Int. Ed. 52 (2013) 8363-8367.
DOI URL |
[22] |
J.F. Li, N. Shan, L. Wang, Q.H. Zhou, Y. Yan, M. Li, C. Guo, Ceram. Int. 46 (2020) 19873-19879.
DOI URL |
[23] |
J.J. Deng, X.L. Yu, X.Y. Qin, D. Zhou, L.H. Zhang, H. Duan, F.Y. Kang, B.H. Li, G.X. Wang, Adv. Energy Mater. 9 (2019), 1803612.
DOI URL |
[24] |
M. Li, Q.H. Zhou, C.W. Ren, N. Shen, Q. Chen, J. Zhao, C. Guo, L. Zhang, J.F. Li, Nanoscale 11 (2019) 22550-22558.
DOI URL |
[25] |
J.F. Li, S.L. Xiong, Y.R. Liu, Z.C. Ju, Y.T. Qian, ACS Appl. Mater. Interfaces 5 (2013) 981-988.
DOI URL |
[26] |
F.K. Chen, Y.H. Ho, H.W. Chang, Y.C. Tsai, Electrochem. Commun. 117 (2020), 106783.
DOI URL |
[27] |
A. Thissen, D. Ensling, F.J. Fernandez-Madrigal, W. Jaegermann, R. Alcantara, P. Lavela, J.L. Tirado, Chem. Mater. 17 (2005) 5202-5208.
DOI URL |
[28] |
P. Krishnan, K.L. Hsueh, S.D. Yim, Appl. Catal. B 77 (2007) 206-214.
DOI URL |
[29] |
W.J. Wang, M.H. Qiao, H.X. Li, W.L. Dai, J.F. Deng, Appl. Catal. A 168 (1998) 151-157.
DOI URL |
[30] |
D. Yang, W.H. Chen, X.X. Zhang, L.W. Mi, C.T. Liu, L.J. Chen, X.X. Guan, Y.L. Cao, C.Y. Shen, J. Mater. Chem. A 7 (2019) 19709-19718.
DOI |
[31] |
Z.Y. Sang, X. Yan, D. Su, H.M. Ji, S.H. Wang, S.X. Dou, J. Liang, Small 16 (2020), 2001265.
DOI URL |
[32] |
Z.Y. Sang, D. Su, J.S. Wang, Y. Liu, H.M. Ji, Chem. Eng. J. 381 (2020), 122677.
DOI URL |
[33] |
W.L. Guo, W.P. Si, T. Zhang, Y.H. Han, L. Wang, Z.Y. Zhou, P.Y. Lu, F. Hou, J. Liang, J. Energy Chem. 54 (2021) 746-753.
DOI URL |
[34] |
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, B. Dunn, Nat. Mater. 12 (2013) 518-522.
DOI URL |
[1] | Chuang Liu, Fanxin Zeng, Li Xu, Shuangyu Liu, Jincheng Liu, Xinping Ai, Hanxi Yang, Yuliang Cao. Enhanced cycling stability of antimony anode by downsizing particle and combining carbon nanotube for high-performance sodium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 81-88. |
[2] | Jaffer Saddique, Xu Zhang, Tianhao Wu, Heng Su, Shiqi Liu, Dian Zhang, Yuefei Zhang, Haijun Yu. Sn4P3-induced crystalline/amorphous composite structures for enhanced sodium-ion battery anodes [J]. J. Mater. Sci. Technol., 2020, 55(0): 73-80. |
[3] | Xia Xueke, Xie Jian, Zhang Shichao, Pan Bin, Cao Gaoshao, Zhao Xinbing. Wrinkled Graphene-Reinforced Nickel Sulfide Thin Film as High-Performance Binder-Free Anode for Sodium-Ion Battery [J]. J. Mater. Sci. Technol., 2017, 33(8): 775-780. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||