J. Mater. Sci. Technol. ›› 2021, Vol. 82: 105-113.DOI: 10.1016/j.jmst.2020.11.068
• Research Article • Previous Articles Next Articles
Yue Zhou*(), William G. Fahrenholtz, Joseph Graham, Gregory E. Hilmas
Received:
2020-09-20
Revised:
2020-11-03
Accepted:
2020-11-03
Published:
2021-01-20
Online:
2021-01-20
Contact:
Yue Zhou
About author:
∗ E-mail address: yznwb@mst.edu (Y. Zhou).Yue Zhou, William G. Fahrenholtz, Joseph Graham, Gregory E. Hilmas. From thermal conductive to thermal insulating: Effect of carbon vacancy content on lattice thermal conductivity of ZrCx[J]. J. Mater. Sci. Technol., 2021, 82: 105-113.
Ref. | Densification method | Composition | Relative density | Average grain size | Impurity Content | Thermal conductivity (W m-1 K-1) |
---|---|---|---|---|---|---|
[ | HP | ZrC0.98 | 95% | 50 μm | <0.2 wt.% | 32.2, 600 ℃ |
[ | HP | ZrC0.98 | 95% | 50 μm | <0.2 wt.% | 38.5, 1300 ℃ |
[ | SPS | ZrC | 93.3 % | ∼10 μm | N/A | 31.3, 200 ℃ |
[ | HP | ZrC | 91.5 % | N/A | >0.165 wt.% | 26.7, 1325 ℃ |
[ | HP | ZrC | 91.9 % | 3.7 μm | N/A | 17.7, 300 ℃ |
Table 1 Densification methods and sample characteristics of ZrCx from previous studies sorted by highest to lowest thermal conductivity.
Ref. | Densification method | Composition | Relative density | Average grain size | Impurity Content | Thermal conductivity (W m-1 K-1) |
---|---|---|---|---|---|---|
[ | HP | ZrC0.98 | 95% | 50 μm | <0.2 wt.% | 32.2, 600 ℃ |
[ | HP | ZrC0.98 | 95% | 50 μm | <0.2 wt.% | 38.5, 1300 ℃ |
[ | SPS | ZrC | 93.3 % | ∼10 μm | N/A | 31.3, 200 ℃ |
[ | HP | ZrC | 91.5 % | N/A | >0.165 wt.% | 26.7, 1325 ℃ |
[ | HP | ZrC | 91.9 % | 3.7 μm | N/A | 17.7, 300 ℃ |
Composition | Lattice constant a (Å) | c11 (Gpa) | c44 (GPa) | c12 (GPa) | G (GPa) | B (GPa) | E (GPa) | v | HV (GPa) |
---|---|---|---|---|---|---|---|---|---|
ZrC | 4.706, (4.705) [ | 451.6, (451.6) [ | 155.4, (155.3) [ | 106.9, (106.9) [ | 162.2, (162.1) [ | 221.8, (221.8) [ | 391.2, (390.7) [ | 0.21, (0.206) [ | 24.2, (23.4) [ |
ZrC0.75 | 4.692 | 369.2 | 108.9 | 98.4 | 119.5 | 188.6 | 295.9 | 0.24 | 16.2 |
Zr2C (ZrC0.5) | 9.369 [ | 205.3 | 101.6 | 100.0 | 82.1, (71) [ | 135.1, (137) [ | 204.7 | 0.25 | 11.7, (8.4) [ |
Table 2 Calculated lattice parameters (a), elastic constants (c11, c44, c12), shear modulus (G), bulk modulus (B), elastic modulus (E), Poisson’s ratio (v), and microhardness (HV) of ZrC, ZrC0.75 and Zr2C (ZrC0.5) in the present and (previously reported) calculations.
Composition | Lattice constant a (Å) | c11 (Gpa) | c44 (GPa) | c12 (GPa) | G (GPa) | B (GPa) | E (GPa) | v | HV (GPa) |
---|---|---|---|---|---|---|---|---|---|
ZrC | 4.706, (4.705) [ | 451.6, (451.6) [ | 155.4, (155.3) [ | 106.9, (106.9) [ | 162.2, (162.1) [ | 221.8, (221.8) [ | 391.2, (390.7) [ | 0.21, (0.206) [ | 24.2, (23.4) [ |
ZrC0.75 | 4.692 | 369.2 | 108.9 | 98.4 | 119.5 | 188.6 | 295.9 | 0.24 | 16.2 |
Zr2C (ZrC0.5) | 9.369 [ | 205.3 | 101.6 | 100.0 | 82.1, (71) [ | 135.1, (137) [ | 204.7 | 0.25 | 11.7, (8.4) [ |
Composition | γTA1 | γTA2 | γLA | θTA1 | θTA2 | θLA | vTA1 | vTA2 | vLA |
---|---|---|---|---|---|---|---|---|---|
N/A | (K) | (km s-1) | |||||||
ZrC | 1.79 | 1.51 | 1.65 | 340 | 340 | 467 | 4.2 | 4.2 | 8.0 |
ZrC0.75 | 0.92 | 1.28 | 1.52 | 242 | 242 | 242 | 2.4 | 2.4 | 3.2 |
Zr2C | 10.05 | 9.12 | 4.32 | 167 | 172 | 220 | 4.0 | 4.8 | 7.1 |
ZrB2 | 1.50 | 1.22 | 1.43 | 380 | 355 | 422 | 6.5 | 6.5 | 9.2 |
Nd2Zr2O7 | 6.23 | 10.10 | 2.75 | 138 | 138 | 260 | 3.13 | 3.13 | 5.91 |
Sm2Zr2O7 | 7.40 | 11.98 | 2.81 | 137 | 137 | 256 | 3.09 | 3.09 | 5.78 |
Gd2Zr2O7 | 7.19 | 11.57 | 2.75 | 137 | 137 | 252 | 3.06 | 3.06 | 5.63 |
Table 3 Grüneisen parameters, Debye temperatures, and group velocities of ZrC, ZrC0.75 and Zr2C (ZrC0.5) compared with a highly thermal conductive (ZrB2) [37] and thermal insulating rare-earth pyrochlores [64].
Composition | γTA1 | γTA2 | γLA | θTA1 | θTA2 | θLA | vTA1 | vTA2 | vLA |
---|---|---|---|---|---|---|---|---|---|
N/A | (K) | (km s-1) | |||||||
ZrC | 1.79 | 1.51 | 1.65 | 340 | 340 | 467 | 4.2 | 4.2 | 8.0 |
ZrC0.75 | 0.92 | 1.28 | 1.52 | 242 | 242 | 242 | 2.4 | 2.4 | 3.2 |
Zr2C | 10.05 | 9.12 | 4.32 | 167 | 172 | 220 | 4.0 | 4.8 | 7.1 |
ZrB2 | 1.50 | 1.22 | 1.43 | 380 | 355 | 422 | 6.5 | 6.5 | 9.2 |
Nd2Zr2O7 | 6.23 | 10.10 | 2.75 | 138 | 138 | 260 | 3.13 | 3.13 | 5.91 |
Sm2Zr2O7 | 7.40 | 11.98 | 2.81 | 137 | 137 | 256 | 3.09 | 3.09 | 5.78 |
Gd2Zr2O7 | 7.19 | 11.57 | 2.75 | 137 | 137 | 252 | 3.06 | 3.06 | 5.63 |
Fig. 6. Lattice thermal conductivities of (a) ZrC, (b) ZrC0.75 and (c) Zr2C (ZrC0.5) based on theoretical prediction. (κUI: isotope effect; κUA: isotope and grain boundary effects; κN: isotope, grain boundary, U, and N effects.).
[1] |
S. Ueta, J. Aihara, A. Yasuda, H. Ishibashi, T. Takayama, K. Sawa, J. Nucl. Mater. 376 (2008) 146-151.
DOI URL |
[2] | G.D. Del Cul, B.B. Spencer, C.W. Forsbert, E.D. Collings, W.S. Rickman, Trans. Am. Nucl. Soc. 88 (2003) 376. |
[3] |
E. López-Honorato, J. Tan, P.J. Meadows, G. Marsh, P. Xiao, J. Nucl. Mater. 392 (2009) 219-224.
DOI URL |
[4] |
T. Ogawa, K. Ikawa, J. Nucl. Mater. 98 (1981) 18-26.
DOI URL |
[5] |
G. Newsome, L.L. Snead, T. Hinoki, Y. Katoh, D. Peters, J. Nucl. Mater. 371 (2007) 76-89.
DOI URL |
[6] |
L.L. Snead, Y. Katoh, S. Kondo, J. Nucl. Mater. 399 (2010) 200-207.
DOI URL |
[7] |
G.M. Song, Y.J. Wang, Y. Zhou, J. Mater. Sci. 36 (2001) 4625-4631.
DOI URL |
[8] |
Q. Tong, J. Shi, Y. Song, Q. Guo, L. Liu, Carbon 42 (2004) 2495-2500.
DOI URL |
[9] |
M.B. Dickerson, P.J. Wurm, J.R. Schorr, W.P. Hoffman, P.G. Wapner, K.H. Sandhage, J. Mater. Sci. 39 (2004) 6005-6015.
DOI URL |
[10] |
X.T. Shen, L. Liu, W. Li, K.Z. Li, Ceram. Int. 41 (2015) 11793-11803.
DOI URL |
[11] |
Q. Liu, J. Liu, X. Luan, J. Mater. Sci. Technol. 35 (2019) 2942-2949.
DOI URL |
[12] |
C.C. Sorrell, V.S. Stubican, R.C. Bradt, J. Am. Ceram. Soc. 69 (1986) 317-321.
DOI URL |
[13] |
L. Xu, C. Huang, H. Liu, B. Zou, H. Zhu, G. Zhao, J. Wang, Int. J. Refract. Met. Hard Mater. 37 (2013) 98-105.
DOI URL |
[14] |
Y. Xu, W. Sun, X. Xiong, F. Liu, X. Luan, J. Mater. Sci. Technol. 35 (2019) 2785-2798.
DOI URL |
[15] |
R.E. Taylor, J. Am. Ceram. Soc. 45 (1962) 74-78.
DOI URL |
[16] |
B. Wei, L. Chen, Y. Wang, H. Zhang, S. Peng, J. Ouyang, D. Wang, Y. Zhou, J. Eur. Ceram. Soc. 38 (2018) 411-419.
DOI URL |
[17] |
X. Wei, C. Back, O. Izhvanov, C. Haines, E. Olevsky, Materials 9 (2016) 577.
DOI URL |
[18] |
R.E. Taylor, J. Morreale, J. Am. Ceram. Soc. 47 (1964) 69-73.
DOI URL |
[19] |
L.N. Grossman, J. Am. Ceram. Soc. 48 (1965) 236-242.
DOI URL |
[20] |
R.V. Sara, J. Am. Ceram. Soc. 48 (1965) 243-247.
DOI URL |
[21] | Y. Katoh, G. Vasudevamurthy, T. Nozawa, L.L. Snead, J. Nucl. Mater. 441 (2013) 718-742. |
[22] |
C.W. Xie, A.R. Oganov, D. Li, T.T. Debela, N. Liu, D. Dong, Q.F. Zeng, Phys. Chem. Chem. Phys. 18 (2016) 12299.
DOI URL |
[23] |
Y.H. Zhang, B. Liu, J.M. Wang, J.Y. Wang, Acta Mater. 111 (2016) 232-241.
DOI URL |
[24] |
J.P. Crocombette, J. Phys. Condens. Matter 25 (2013), 505501.
DOI URL |
[25] |
L.G. Radosevich, W.S. Williams, J. Am. Ceram. Soc. 49 (1966) 156-159.
DOI URL |
[26] |
R.O. Pohl, Phys. Rev. Lett. 8 (1962) 481.
DOI URL |
[27] | A.I. Gusev, A.A. Rempel, A.J. Magerl, Heidelberg, 2001. |
[28] |
Y. Zhang, B. Liu, J. Wang, Sci. Rep. 5 (2015) 18098.
DOI URL |
[29] |
Y. Zhou, T.W. Heitmann, E. Bohannan, J.C. Schaeperkoetter, W.G. Fahrenholtz, G.E. Hilmas, J. Am. Ceram. Soc. 103 (2020) 2891-2898.
DOI |
[30] |
W. Hu, J. Xiang, Y. Zhang, S. Liu, C. Chen, P. Wang, H. Wang, F. Wen, B. Xu, J. He, D. Yu, Y. Tian, Z. Liu, J. Mater. Res. 27 (2012) 1230-1236.
DOI URL |
[31] |
T.A. Mellan, A. Aziz, Y. Xia, R. Grau-Crespo, A.I. Duff, Phys. Rev. B 99 (2019), 094310.
DOI URL |
[32] |
Y. Zhou, T.W. Heitmann, W.G. Fahrenholtz, G.E. Hilmas, J. Eur. Ceram. Soc. 39 (2019) 2594-2600.
DOI |
[33] |
E. Padovano, C. Badini, K. Mergia, J. Barcena, Ceram. Int. 44 (2018) 15050-15057.
DOI URL |
[34] | T.H.K. Barron, G.K. White, Heat Capacity and Thermal Expansion at Low Temperatures, Berlin/Heidelberg, Germany, Springer Science & Business Media, 2012. |
[35] | P.G. Klemens, Proc. R. Soc. Lond. Ser. A 208 (1951) 108-133. |
[36] |
J. Callaway, Phys. Rev. 113 (1959) 1046-1051.
DOI URL |
[37] |
H. Xiang, Z. Feng, Z. Li, Y. Zhou, Sci. Rep. 8 (2018) 14374.
DOI URL |
[38] |
H. Xiang, J. Wang, Y. Zhou, J. Eur. Ceram. Soc. 39 (2019) 2982-2988.
DOI URL |
[39] |
Y. Zhang, J. Materiomics 2 (2016) 237-247.
DOI URL |
[40] |
K. Hirao, Y. Zhou, H. Hyuga, T. Ohji, D. Kusano, J. Korean Ceram. Soc. 49 (2012) 380-384.
DOI URL |
[41] |
Y. Zhou, H. Hyuga, D. Kusano, Y. Yoshizawa, K. Hirao, Adv. Mater. 23 (2011) 4563-4567.
DOI URL |
[42] | D. Morelli, J. Heremans, Appl. Phys. Lett. 81 (2013) 8-10. |
[43] | W. Jones, N.H. March, Great Britain, 1973. |
[44] | R.E. Taylor, E.K. Storms, Thermal transport in refractory carbides, in: P.H. Klemens, T.K. Chu (Eds.), Thermal Conductivity 14, Plenum Press, New York, 1975. |
[45] |
D.T. Morelli, J.P. Heremans, G.A. Slack, Phys. Rev. B 66 (2002), 195304.
DOI URL |
[46] |
M. Asen-Palmer, K. Bartkowski, E. Gmelin, M. Cardona, A. Zhernov, A. Inyushkin, A. Taldenkov, V. Ozhogin, K. Itoh, E. Haller, Phys. Rev. B 56 (1997) 9431-9447.
DOI URL |
[47] |
L. Lindsay, D.A. Broido, T.L. Reinecke, Phys. Rev. B 88 (2013), 144306.
DOI URL |
[48] |
H. Xiang, Z. Feng, Z. Li, Y. Zhou, Sci. Rep. 8 (2018) 14374.
DOI URL |
[49] |
D.T. Morelli, J.P. Heremans, G.A. Slack, Phys. Rev. B 66 (2002), 195304.
DOI URL |
[50] | G. Grimvall, Netherlands, 1999. |
[51] |
P.G. Klemens, Proc. Phys. Soc. Sect. A 68 (1955) 1113-1128.
DOI URL |
[52] |
E.S. Toberer, A. Zevalkink, G.J. Snyder, J. Mater. Chem. 21 (2011) 15843-15852.
DOI URL |
[53] |
W. Hu, J. Xiang, S. Liu, Y. Zhang, C. Chen, P. Wang, H. Wang, Inorg. Chem. 51 (2012) 5164-5172.
DOI URL |
[54] |
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. Chiarotti, M. Cococcioni, I. Dabo, J. Phys. Condens. Matter 21 (2009), 395502.
DOI URL |
[55] |
B.G. Pfrommer, M. Côté, S.G. Louie, M.L. Cohen, J. Comput. Phys. 131 (1997) 233-240.
DOI URL |
[56] |
D. Vanderbilt, Phys. Rev. B 41 (1990), 7892-1895.
DOI URL |
[57] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
PMID |
[58] |
H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188-5192.
DOI URL |
[59] | W. Voigt, Germany, 1928. |
[60] |
X. Chen, H. Niu, D. Li, Y. Li, Intermetallics 19 (2011) 1275-1281.
DOI URL |
[61] |
X. Gonze, Phys. Rev. B 55 (1997) 10337-10354.
DOI URL |
[62] | H.F. Jackson, W.E. Lee, Properties and characteristic of ZrC, in: R. Konings (Ed.), Stoller Volume 2 in Comprehensive Nuclear Materials, Elsevier, Amsterdam, Netherland, 2012, pp. 339-372. |
[63] |
H. Li, L. Zhang, Q. Zeng, K. Guan, K. Li, H. Ren, S. Liu, L. Cheng, Solid State Commun. 151 (2011) 602-606.
DOI URL |
[64] |
G. Lan, B. Ouyang, J. Song, Acta Mater. 91 (2015) 304-317.
DOI URL |
[65] |
T. Wang, J. Carrete, A. van Roekeghem, N. Mingo, G.K.H. Madsen, Phys. Rev. B 95 (2017), 245304.
DOI URL |
[66] | J.M. Ziman, Electrons and Phonons: the Theory of Transport Phenomena in Solids, Oxford University Press, Oxford, United Kingdom, 2001. |
[67] |
H.J. Goldsmid, A.W. Penn, Phys. Lett. A 27 (1968) 523-524.
DOI URL |
[68] | J.E. Parrott, J. Phys. C: Solid State Phys. 2 (1969) 147. |
[69] | N. Savvides, H.J. Goldsmid, J. Phys. C: Solid State Phys. 13 (1980) 4657-4670. |
[70] |
D.M. Rowe, C.M. Bhandari, Appl. Phys. Lett. 47 (1985) 255-257.
DOI URL |
[71] | Y. Arita, Y. Nishi, M. Amaya, T. Matsui, Thermochim. Acta 352 (2000) 39-42. |
[72] |
S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. Balandin, R. Ruoff, Nat. Mater. 11 (2012) 203-207.
DOI URL |
[73] |
L. Lindsay, D.A. Broido, T.L. Reinecke, Phys. Rev. Lett. 109 (2012), 095901.
DOI URL |
[74] |
L. Lindsay, D.A. Broido, T.L. Reinecke, Phys. Rev. B 87 (2013), 165201.
DOI URL |
[75] |
X. Li, J. Chen, C. Yu, G. Zhang, Appl. Phys. Lett. 103 (2013), 013111.
DOI URL |
[76] |
L. Lindsay, D.A. Broido, T.L. Reinecke, Phys. Rev. B 88 (2013), 144306.
DOI URL |
[1] | Hairui Xing, Ping Hu, Shilei Li, Yegai Zuo, Jiayu Han, Xingjiang Hua, Kuaishe Wang, Fan Yang, Pengfa Feng, Tian Chang. Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: A review [J]. J. Mater. Sci. Technol., 2021, 62(0): 180-194. |
[2] | H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48(0): 146-155. |
[3] | Fu-Zhi Dai, Huimin Xiang, Yinjie Sun, Yanchun Zhou. M2M'AlB4 (M = Mn, Fe, Co, M' = Cr, Mo, W): Theoretical predicted ordered MAB phases with Cr3AlB4 crystal structure [J]. J. Mater. Sci. Technol., 2019, 35(7): 1432-1438. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||