J. Mater. Sci. Technol. ›› 2021, Vol. 82: 96-104.DOI: 10.1016/j.jmst.2020.11.020
• Research Article • Previous Articles Next Articles
Yao Panga, Wence Xuc, Shengli Zhua,b,e,*(), Zhenduo Cuia, Yanqin Lianga,*(
), Zhaoyang Lia, Shuilin Wua, Chuntao Changd,**(
), Shuiyuan Luoe
Received:
2020-07-31
Revised:
2020-10-02
Accepted:
2020-10-13
Published:
2020-11-07
Online:
2020-11-07
Contact:
Shengli Zhu,Yanqin Liang,Chuntao Chang
About author:
∗∗ School of Mechanical Engineering, Dongguan University of Technology.E-mail addresses: changct@dgut.edu.cn (C. Chang).Yao Pang, Wence Xu, Shengli Zhu, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo. Self-supporting amorphous nanoporous NiFeCoP electrocatalyst for efficient overall water splitting[J]. J. Mater. Sci. Technol., 2021, 82: 96-104.
Fig. 2. (a) SEM image, (b) TEM image, (c) HRTEM image and SAED pattern, (d) XRD pattern and (e) elemental mapping of Ni, Fe, Co and P of the np-NiFeCoP catalyst.
Fig. 4. Electrochemical test results for OER: (a) LSV curves, (b) overpotentials at various current densities, (c) Tafel plots, (d) Nyquist plots, and (e) CA curve of the np-NiFeCoP.
Fig. 5. (a) In situ Raman spectra of the np-NiFeCoP, (b) magnification of the corresponding green wavelength region of (a) and (c) the intensity ratios (I1/I2).
Fig. 6. Electrochemical test results for HER: (a) LSV curves, (b) overpotentials at various current densities, (c) Tafel plots, (d) Nyquist plots, (e) SCN- poison test of the np-NiFeCoP catalyst, and (f) CA curve of the np-NiFeCoP catalyst.
[1] |
L. Zhou, M.F. Shao, J.B. Li, S. Jiang, M. Wei, X. Duan, Nano Energy 41 (2017) 583-590.
DOI URL |
[2] |
G.F. Chen, T.Y. Ma, Z.Q. Liu, N. Li, Y.Z. Su, K. Davey, S.Z. Qiao, Adv. Funct. Mater. 26 (2016) 3314-3323.
DOI URL |
[3] | J.J. Huo, Y.L. Chen, Y. Liu, J.J. Guo, L. Lu, W.X. Li, Y. Wang, H. Liu, Sustain. Mater. Techonol. 22 (2019), e00117. |
[4] |
W.C. Xu, S.L. Zhu, Y.Q. Liang, Z.D. Cui, X.J. Yang, A. Inoue, J. Mater. Chem. A 6 (2018) 5574-5579.
DOI URL |
[5] |
Y. Lin, Y. Pan, S.J. Liu, K.A. Sun, Y.S. Cheng, M. Liu, Z.J. Wang, X.Y. Li, J. Zhang, Appl. Catal. B: Environ. 259 (2019), 118039.
DOI URL |
[6] |
V. Vij, S. Sultan, A.M. Harzandi, A. Meena, J.N. Tiwari, W.G. Lee, T. Yoon, K.S. Kim, ACS Catal. 7 (2017) 7196-7225.
DOI URL |
[7] |
X. Xu, C. Li, J.G. Lim, Y. Wang, A. Ong, X. Li, E. Peng, J. Ding, ACS Appl. Mater. Interfaces 10 (2018) 30273-30282.
DOI URL |
[8] |
A.L. Han, H.L. Chen, Z.J. Sun, J. Xu, P.W. Du, Chem. Commun. 51 (2015) 11626-11629.
DOI URL |
[9] |
X. Jin, J. Li, Y.T. Cui, X.Y. Liu, K. Wang, Y. Zhou, W.J. Yang, X.L. Zhang, C. Zhang, X. Jiang, B.D. Liu, Int. J. Hydrog. Energy 44 (2019) 5739-5747.
DOI URL |
[10] |
Y.H. Chung, K. Guptab, J.H. Jang, H.S. Park, I. Jang, J.H. Jang, Y.K. Lee, S.C. Lee, S.J. Yoo, Nano Energy 26 (2016) 496-503.
DOI URL |
[11] |
H.M. Sun, X.B. Xu, Z.H. Yan, X. Chen, F.Y. Cheng, P.S. Weiss, J. Chen, Chem. Mater. 29 (2017) 8539-8547.
DOI URL |
[12] |
X.G. Wang, W. Li, D.H. Xiong, L.F. Liu, J. Mater. Chem. A 4 (2016) 5639-5646.
DOI URL |
[13] |
Y.J. Li, H.C. Zhang, M. Jiang, Q. Zhang, P.L. He, X.M. Sun, Adv. Funct. Mater. 27 (2017), 1702513.
DOI URL |
[14] |
R.Q. Li, B.L. Wang, T. Gao, R. Zhang, C.Y. Xu, X.F. Jiang, J.J. Zeng, Y. Bando, P.F. Hu, Y.L. Li, X.B. Wang, Nano Energy 58 (2019) 870-876.
DOI URL |
[15] |
J.S. Zhang, K. Hou, Q.Q. Yao, C.X. Wu, M.H. Huang, L.H. Guan, Int. J. Hydrog. Energy 44 (2019) 11684-11694.
DOI URL |
[16] |
E.L. Hu, Y.F. Feng, J.W. Nai, D. Zhao, Y. Hu, X.W. Lou, Energy Environ. Sci. 11 (2018) 872-880.
DOI URL |
[17] |
L. Wei, K. Goh, Ö. Birer, H.E. Karahan, J. Chang, S.L. Zhai, X.C. Chen, Y. Chen, Nanoscale 9 (2017) 4401-4408.
DOI PMID |
[18] |
K.Q. Dai, X.Y. Gao, L.X. Yin, Y.A. Feng, X.P. Zhou, Y.F. Zhao, B. Zhang, Appl. Surf. Sci. 494 (2019) 22-28.
DOI URL |
[19] |
Q. Wang, H. Zhao, F. Li, W. She, X. Wang, L. Xu, H. Jiao, J. Mater. Chem. A 7 (2019) 7636-7643.
DOI |
[20] |
W.C. Xu, S.L. Zhu, Y.Q. Liang, Z.D. Cui, X.J. Yang, A. Inoue, H.X. Wang, J. Mater. Chem. A 5 (2017) 18793-18800.
DOI URL |
[21] |
X.X. Yang, W.C. Xu, S. Cao, S.L. Zhu, Y.Q. Liang, Z.D. Cui, X.J. Yang, Z.Y. Li, S.L. Wu, A. Inoue, L.Y. Chen, Appl. Catal. B: Environ. 246 (2019) 156-165.
DOI URL |
[22] |
R. Jiang, Z.D. Cui, W.C. Xu, S.L. Zhu, Y.Q. Liang, Z.Y. Li, S.L. Wu, C.T. Chang, A. Inoue, Electrochim. Acta 328 (2019), 135082.
DOI URL |
[23] |
F. Hu, S.L. Zhu, S.M. Chen, Y. Li, L. Ma, T.P. Wu, Y. Zhang, C.M. Wang, C.C. Liu, X.J. Yang, L. Song, X.W. Yang, Y.J. Xiong, Adv. Mater. 29 (2017), 1606570.
DOI URL |
[24] |
H. Xu, J.J. Wei, K. Zhang, M. Zhang, C.F. Liu, J. Guo, Y.K. Du, J. Mater. Chem. A 6 (2018) 22697-22704.
DOI URL |
[25] |
Y. Zhao, M. Luo, S.F. Chu, M. Peng, B.Y. Liu, Q.L. Wu, P. Liu, F.M.F. De Groot, Y.W. Tan, Nano Energy 59 (2019) 146-153.
DOI URL |
[26] |
Y.Y. Zhou, H.P. Liu, S.L. Zhu, Y.Q. Liang, S.L. Wu, Z.Y. Li, Z.D. Cui, C.T. Chang, X.J. Yang, A. Inoue, ACS Appl. Energy Mater. 2 (2019) 7913-7922.
DOI URL |
[27] | H.M. Sun, Z.H. Yan, F.M. Liu, W.C. Xu, F.Y. Cheng, J. Chen, Adv. Mater. 32 (2020), e1806326. |
[28] |
Y.W. Tan, H. Wang, P. Liu, Y.H. Shen, C. Cheng, A. Hirata, T. Fujita, Z. Tang, M.W. Chen, Energy Environ. Sci. 9 (2016) 2257-2261.
DOI URL |
[29] |
H.F. Liang, A.N. Gandi, D.H. Anjum, X.B. Wang, U. Schwingenschlogl, H.N. Alshareef, Nano Lett. 16 (2016) 7718-7725.
DOI URL |
[30] |
J.Y. Xu, J.J. Li, D.H. Xiong, B.S. Zhang, Y.F. Liu, K.-H. Wu, I. Amorim, W. Li, L.F. Liu, Chem. Sci. 9 (2018) 3470-3476.
DOI URL |
[31] |
J.S. Yu, Y. Ding, C.X. Xu, A. Inoue, T. Sakurai, M.W. Chen, Chem. Mater. 20 (2008) 4548-4550.
DOI URL |
[32] |
R. Li, X.J. Liu, H. Wang, D.Q. Zhou, Y. Wu, Z.P. Lu, Acta Mater. 105 (2016) 367-377.
DOI URL |
[33] |
B.W. Zhang, Y.H. Lui, A.P.S. Gaur, B.L. Chen, X.H. Tang, Z.Y. Qi, S. Hu, ACS Appl. Mater. Interfaces 10 (2018) 8739-8748.
DOI URL |
[34] |
F. Yu, H.Q. Zhou, Y.F. Huang, J.Y. Sun, F. Qin, J.M. Bao, W.A. Goddard, S. Chen, Z.F. Ren, Nat. Commun. 9 (2018) 2551.
DOI URL |
[35] |
Y. Yan, B.Y. Xia, X.M. Ge, Z.L. Liu, A. Fisher, X. Wang, Chem. Eur. J. 21 (2015) 18062-18067.
DOI URL |
[36] |
C. Tang, R. Zhang, W.B. Lu, L.B. He, X. Jiang, A.M. Asiri, X.P. Sun, Adv. Mater. 29 (2017), 1602441.
DOI URL |
[37] | W.C. Xu, T. Wang, H.X. Wang, S.L. Zhu, Y.Q. Liang, Z.D. Cui, X.J. Yang, A. Inoue, Energy Stor. Mater. 17 (2019) 300-308. |
[38] | C.L. Liu, G. Zhang, L. Yu, J.H. Qu, H.J. Liu, Small 14 (2018), e1800421. |
[39] |
R. Boppella, J.W. Tan, W. Yang, J. Moon, Adv. Funct. Mater. 29 (2018), 1807976.
DOI URL |
[40] |
Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 44 (2015) 2060-2086.
DOI PMID |
[41] | T. Wang, X. Liu, Z. Yan, Y. Teng, R. Li, J. Zhang, T. Peng, Chem. Eng. 8 (2019) 1240-1251. |
[42] |
H. Ren, X.L. Sun, C.F. Du, J. Zhao, D.B. Liu, W. Fang, S. Kumar, R. Chua, S. Meng, P. Kidkhunthod, L. Song, S.Q. Li, S. Madhavi, Q.Y. Yan, ACS Nano 13 (2019) 12969-12979.
DOI URL |
[43] |
Z. Qiu, C.W. Tai, G.A. Niklasson, T. Edvinsson, Energy Environ. Sci. 12 (2019) 572-581.
DOI URL |
[44] |
X.D. Cheng, Z.Y. Pan, C.J. Lei, Y.J. Jin, B. Yang, Z.J. Li, X.W. Zhang, L.C. Lei, C. Yuan, Y. Hou, J. Mater. Chem. A 7 (2019) 965-971.
DOI URL |
[45] |
M.W. Louie, A.T. Bell, J. Am. Chem. Soc. 135 (2013) 12329-12337.
DOI PMID |
[46] |
J. Yang, H.W. Liu, W.N. Martens, R.L. Frost, J. Phys. Chem. C 114 (2010) 111-119.
DOI URL |
[47] |
X.L. Zheng, B. Zhang, P. De Luna, Y.F. Liang, R. Comin, O. Voznyy, L.L. Han, F.P. Garcia De Arquer, M. Liu, C.T. Dinh, T. Regier, J. Dynes, S. He, H.L. Xin, H.S. Peng, D. Prendergast, X.W. Du, E.H. Sargent, Nat. Chem. 10 (2018) 149-154.
DOI URL |
[48] |
Z. Qiu, Y. Ma, T. Edvinsson, Nano Energy 66 (2019), 104118.
DOI URL |
[49] |
W.C. Xu, G.L. Fan, J.L. Chen, J.H. Li, L. Zhang, S.L. Zhu, X.C. Su, F.Y. Cheng, J. Chen, Angew. Chem. Int. Ed. Engl. 59 (2020) 3511-3516.
DOI URL |
[50] |
K.S. Joya, X. Sala, Phys. Chem. Chem. Phys. 17 (2015) 21094-21103.
DOI URL |
[51] |
J.F. Zhang, J.Y. Liu, L.F. Xi, Y.F. Yu, N. Chen, S.H. Sun, W.C. Wang, K.M. Lange, B. Zhang, J. Am. Chem. Soc. 140 (2018) 3876-3879.
DOI URL |
[52] |
P. Babar, A. Lokhande, V. Karade, B. Pawar, M.G. Gang, S. Pawar, J.H. Kim, ACS Sustain. Chem. Eng. 7 (2019) 10035-10043.
DOI URL |
[53] |
J. Yin, Q.H. Fan, Y.X. Li, F.Y. Cheng, P.P. Zhou, P.X. Xi, S.H. Sun, J. Am. Chem. Soc. 138 (2016) 14546-14549.
DOI URL |
[54] |
H.M. Sun, X.B. Xu, Z.H. Yan, X. Chen, L.F. Jiao, F.Y. Cheng, J. Chen, J. Mater. Chem. A 6 (2018) 22062-22069.
DOI URL |
[55] |
R. Zhang, X.X. Wang, S.J. Yu, T. Wen, X.W. Zhu, F.X. Yang, X.N. Sun, X.K. Wang, W.P. Hu, Adv. Mater. 29 (2017), 1605502.
DOI URL |
[1] | Xiangtao Yu, Xiangyu Ren, Yanwei Zhang, Zhangfu Yuan, Zhuyin Sui, Mingyong Wang. Self-supporting hierarchically micro/nano-porous Ni3P-Co2P-based film with high hydrophilicity for efficient hydrogen production [J]. J. Mater. Sci. Technol., 2021, 65(0): 118-125. |
[2] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[3] | J. Tang, J.L. Xu, Z.G. Ye, X.B. Li, J.M. Luo. Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 79(0): 171-177. |
[4] | Guoguo Xi, Lei Zuo, Xuan Li, Yu Jin, Ran Li, Tao Zhang. In-situ constructed Ru-rich porous framework on NiFe-based ribbon for enhanced oxygen evolution reaction in alkaline solution [J]. J. Mater. Sci. Technol., 2021, 70(0): 197-204. |
[5] | Yuan-Yun Zhao, Feng Qian, Chengliang Zhao, Chunxiao Xie, Jianguo Wang, Chuntao Chang, Yanjun Li, Lai-Chang Zhang. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses [J]. J. Mater. Sci. Technol., 2021, 70(0): 205-213. |
[6] | Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 145-150. |
[7] | Bin Wang, Yuanfu Chen, Qi Wu, Yingjiong Lu, Xiaojuan Zhang, Xinqiang Wang, Bo Yu, DongXu Yang, Wanli Zhang. A co-coordination strategy to realize janus-type bimetallic phosphide as highly efficient and durable bifunctional catalyst for water splitting [J]. J. Mater. Sci. Technol., 2021, 74(0): 11-20. |
[8] | Thanh-Tung Le, Xiao Liu, Peijun Xin, Qing Wang, Chunyan Gao, Ye Wu, Yong Jiang, Zhangjun Hu, Shoushuang Huang, Zhiwen Chen. Phosphorus-doped Fe7S8@C nanowires for efficient electrochemical hydrogen and oxygen evolutions: Controlled synthesis and electronic modulation on active sites [J]. J. Mater. Sci. Technol., 2021, 74(0): 168-175. |
[9] | Guanglu Li, Chang Liu, Zhao Zhang, Baihua Cui, Yanan Chen, Yida Deng, Wenbin Hu. Nano-manufacturing of Co(OH)2@NC for efficient oxygen evolution/reduction reactions [J]. J. Mater. Sci. Technol., 2021, 81(0): 131-138. |
[10] | Yuan-Yun Zhao, Feng Qian, Wenfeng Shen, Chengliang Zhao, Jianguo Wang, Chunxiao Xie, Fengling Zhou, Chuntao Chang, Yanjun Li. Facile synthesis of metal and alloy nanoparticles by ultrasound-assisted dealloying of metallic glasses [J]. J. Mater. Sci. Technol., 2021, 82(0): 144-152. |
[11] | Yuanmei Xu, Xiaoqin Zhang, Zhihong Chen, Krzysztof Kempa, Xin Wang, Lingling Shui. Chemical vapor deposition of amorphous molybdenum sulphide on black phosphorus for photoelectrochemical water splitting [J]. J. Mater. Sci. Technol., 2021, 68(0): 1-7. |
[12] | Hongyan Wang, Ran Wei, Xiumin Li, Xuli Ma, Xiaogang Hao, Guoqing Guan. Nanostructured amorphous Fe29Co27Ni23Si9B12 high-entropy-alloy: an efficient electrocatalyst for oxygen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 68(0): 191-198. |
[13] | Xin Wang, Jun Wang, Bin Wei, Nan Zhang, Junyuan Xu, Hongwei Miao, Lifeng Liu, Chenliang Su, Ying Li, Zhongchang Wang. Plasma tailoring in WTe2 nanosheets for efficiently boosting hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 78(0): 170-175. |
[14] | Manigandan Ramadoss, Yuanfu Chen, Yang Hu, Bin Wang, Ramkumar Jeyagopal, Karpuraranjith Marimuthu, Xinqiang Wang, Dongxu Yang. Hierarchically porous nanoarchitecture constructed by ultrathin CoSe2 embedded Fe-CoO nanosheets as robust electrocatalyst for water oxidation [J]. J. Mater. Sci. Technol., 2021, 78(0): 229-237. |
[15] | Gaoqi Tian, Songrui Wei, Zhangtao Guo, Shiwei Wu, Zhongli Chen, Fuming Xu, Yang Cao, Zheng Liu, Jieqiong Wang, Lei Ding, Jinchun Tu, Hao Zeng. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting [J]. J. Mater. Sci. Technol., 2021, 77(0): 108-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||