J. Mater. Sci. Technol. ›› 2021, Vol. 80: 13-19.DOI: 10.1016/j.jmst.2020.12.006
• Research Article • Previous Articles Next Articles
Zhou Zhou, Chaoying Ding, Wenchao Peng, Yang Li, Fengbao Zhang, Xiaobin Fan*()
Received:
2020-07-20
Accepted:
2020-09-08
Published:
2020-12-17
Online:
2020-12-17
Contact:
Xiaobin Fan
About author:
* E-mail address: xiaobinfan@tju.edu.cn (X. Fan).Zhou Zhou, Chaoying Ding, Wenchao Peng, Yang Li, Fengbao Zhang, Xiaobin Fan. One-step fabrication of two-dimensional hierarchical Mn2O3@graphene composite as high-performance anode materials for lithium ion batteries[J]. J. Mater. Sci. Technol., 2021, 80: 13-19.
Scheme 1. Schematic illustration of the formation process of Mn2O3@graphene. The dashed boxes in Scheme 1 indicate the lithium ions intercalation electrode material and electron transfer during discharge-charge cycling.
Fig. 1. (a) XRD patterns of Mn2O3@graphene composite. (b) TGA curves of Mn2O3@graphene and NaMnxOy sample at a heating rate of 10 °C min -1 under air flux. (c) Raman spectrum.
Fig. 4. Electrochemical performance of Mn2O3@graphene composite: (a) CV curves at a scan rate of 0.1 mV s-1, (b) cycling performances between the Mn2O3@g - 10, Mn2O3@g-20, Mn2O3@g-50, Mn2O3@g - 100, Mn2O3@g-200, graphene and NaMnxOy at the current of 100 mA g-1, (c) cycling performances of the Mn2O3@G-20 at the current of 500 mA g-1, (d) rate capabilities.
Fig. 5. (a) Selected discharge voltage profiles. (b) The difference of the capacities between the 100th and the 10th cycle and their differential vs. voltage. (c) XRD pattern of Mn2O3@graphene composite electrode after discharging to 2.35 V (I), 0.46 V (II), 0.43 V (III), 0.18 V (IV) and 0.03 V (V).
[1] |
M. Armand, J.M. Tarascon, Nature 451 (2008) 652-657.
DOI URL |
[2] | K.K. Fu, Z. Wang, C. Yan, Z. Liu, Y. Yao, J. Dai, E. Hitz, Y. Wang, W. Luo, Y. Chen, M. Kim, L. Hu, Adv. Eng. Mater. 6 (2016), 1502496. |
[3] | S.H. Yu, S.H. Lee, D.J. Lee, Y.E. Sung, T. Hyeon, Small 16 (2016) 2146-2172. |
[4] |
M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 30 (2018), 1800561.
DOI URL |
[5] |
N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W. Zhao, Y. Cui, Nat. Nanotechnol. 9 (2014) 187-192.
DOI URL |
[6] |
Y. Yang, B. Wang, J. Zhu, J. Zhou, Z. Xu, L. Fan, J. Zhu, R. Podila, A.M. Rao, B. Lu, ACS Nano 10 (2016) 5516-5524.
DOI URL |
[7] |
Z. Tai, C.M. Subramaniyam, S.L. Chou, L. Chen, H.K. Liu, S.X. Dou, Adv. Mater. 29 (2017), 1700605.
DOI URL |
[8] |
T. Xu, D. Wang, P. Qiu, J. Zhang, Q. Wang, B. Xia, X. Xie, Nanoscale 10 (2018) 16638--16644.18
DOI URL |
Z. Zhou et al. Journal of Materials Science & Technology 80 (2021) 13-19. | |
[9] |
J. Yang, J. Zheng, X. Kang, G. Teng, L. Hu, R. Tan, K. Wang, X. Song, M. Xu, S. Mu, F. Pan, Nano Energy 20 (2016) 117-125.
DOI URL |
[10] |
H. Zhang, T. Shi, D.J. Wetzel, R.G. Nuzzo, P.V. Braun, Adv. Mater. 28 (2016) 742-747.
DOI URL |
[11] | R. Hu, Y. Ouyang, T. Liang, H. Wang, J. Liu, J. Chen, C. Yang, L. Yang, M. Zhu, Adv.Mater. 29 (2017), 1605006. |
[12] |
H. Tabassum, R. Zou, A. Mahmood, Z. Liang, Q. Wang, H. Zhang, S. Gao, C. Qu, W. Guo, S. Guo, Adv. Mater. 30 (2018), 1705441.
DOI URL |
[13] |
M. Zheng, H. Tang, L. Li, Q. Hu, L. Zhang, H. Xue, H. Pang, Adv. Sci. 5 (2018),1700592.
DOI URL |
[14] |
B. Zhang, G. Xia, W. Chen, Q. Gu, D. Sun, X. Yu, ACS Nano 12 (2018)12741-12750.
DOI URL |
[15] |
X. Zhao, R. Yu, H. Tang, D. Mao, J. Qi, B. Wang, Y. Zhang, H. Zhao, W. Hu, D. Wang, Adv. Mater. 29 (2017), 1700550.
DOI URL |
[16] |
C. Hu, L. Zhang, Z.J. Zhao, J. Luo, J. Shi, Z. Huang, J. Gong, Adv. Mater. 29 (2017), 1701820.
DOI URL |
[17] |
Y. Zhang, P. Chen, X. Gao, B. Wang, H. Liu, H. Wu, H. Liu, S. Dou, Adv. Funct. Mater. 26 (2016) 7754-7765.
DOI URL |
[18] |
T. Yuan, Y. Jiang, W. Sun, B. Xiang, Y. Li, M. Yan, B. Xu, S. Dou, Adv. Funct. Mater. 26 (2016) 2198-2206.
DOI URL |
[19] |
K. Zhang, X. Han, Z. Hu, X. Zhang, Z. Tao, J. Chen, Chem. Soc. Rev. 44 (2015) 699-728.
DOI URL |
[20] |
J. Henzie, V. Etacheri, M. Jahan, H. Rong, C.N. Hong, V.G. Pol, J. Mater. Chem. A 5 (2017) 6079-6089.
DOI URL |
[21] |
H.Q. Dong, Y.Y. Chen, M. Han, S.L. Li, J. Zhang, J.S. Li, Y.-Q. Lan, Z.H. Dai, J.C. Bao, J. Mater. Chem. A 2 (2014) 1272-1276.
DOI URL |
[22] | H.L. Wang, L.F. Cui, Y. Yang, H.S. Casalongue, Y.L. Joshua, T. Robinson, Y. Cui, H.J. Dai, J. Am. Chem, Soc. 132 (2010) 13978. |
[23] |
J. Shin, D. Shin, H. Hwang, T. Yeo, S. Park, W. Choi, J. Mater. Chem. A 5 (2017) 13488-13498.
DOI URL |
[24] |
L. Li, A.R. Raji, J.M. Tour, Adv. Mater. 25 (2013) 6298-6302.
DOI URL |
[25] |
J. Qin, Q. Zhang, Z. Cao, X. Li, C. Hu, B. Wei, Nano Energy 2 (2013) 733-741.
DOI URL |
[26] |
B.P. Vinayan, N.I. Schwarzburger, M. Fichtner, J. Mater. Chem. A 3 (2015) 6810-6818.
DOI URL |
[27] |
G.Y. Zhu, H.N. Lin, L.B. Ma, P.Y. Zhao, Y. Hu, T. Chen, R.P. Chen, Y.R. Wang, Z. X.Tie, J. Liu, Z. Jin, Adv. Funct. Mater. 28 (2018), 1800003.
DOI URL |
[28] |
Z. Cui, Q. Liu, C. Xu, R. Zou, J. Zhang, W. Zhang, G. Guan, J. Hu, Y. Sun, J. Mater. Chem. A 5 (2017) 21699-21708.
DOI URL |
[29] | L. Zhou, K. Zhang, Z. Hu, Z. Tao, L. Mai, Y.M. Kang, S.L. Chou, J. Chen, Adv. Eng. Mater. 8 (2018), 1701415. |
[30] |
Z. Bai, Y. Zhang, Y. Zhang, C. Guo, B. Tang, D. Sun, J. Mater. Chem. A 3 (2015) 5266-5269.
DOI URL |
[31] |
X. Zhang, Y. Qian, Y. Zhu, K. Tang, Nanoscale 6 (2014) 1725-1731.
DOI PMID |
[32] | G. Wang, J. Zhang, S. Yang, F. Wang, X. Zhuang, K. Müllen, X. Feng, Adv. Eng.Mater. 8 (2018), 1702254. |
[33] |
H. Su, Y.F. Xu, S.C. Feng, Z.G. Wu, X.P. Sun, C.H. Shen, J.Q. Wang, J. T. Li, L. Huang, S.G. Sun, ACS Appl. Mater. Interfaces 7 (2015) 8488-8494.
DOI URL |
[34] |
Z. Deng, H. Jiang, Y. Hu, Y. Liu, L. Zhang, H. Liu, C. Li, Adv. Mater. 29 (2017),1603020.
DOI URL |
[35] |
J. Zhou, X. Liu, W. Cai, Y. Zhu, J. Liang, K. Zhang, Y. Lan, Z. Jiang, G. Wang, Y. Qian, Adv. Mater. 29 (2017), 1700214.
DOI URL |
[36] |
X. Zhao, J. Wang, R. Yu, D. Wang, J. Am. Chem, J. Am. Chem. Soc 140 (2018) 17114.
DOI URL |
[37] |
T. Jiang, F. Bu, X. Feng, I. Shakir, G. Hao, Y. Xu, ACS Nano 11 (2017) 5140-5147.
DOI URL |
[38] |
S. Guo, G. Lu, S. Qiu, J. Liu, X. Wang, C. He, H. Wei, X. Yan, Z. Guo, Nano Energy 9 (2014) 41-49.
DOI URL |
[39] |
X. Zhao, H. Liu, Y. Feng, L. Pang, M. Ding, L. Deng, J. Zhu, Mater. Lett. 231 (2018) 130-133.
DOI URL |
[40] |
J. Mei, T. Liao, L. Kou, Z. Sun, Adv. Mater. 29 (2017), 1700176.
DOI URL |
[41] |
Z. Hu, X. Xiao, H. Jin, T. Li, M. Chen, Z. Liang, Z. Guo, J. Li, J. Wan, L. Huang, Y. Zhang, G. Feng, J. Zhou, Nat. Commun. 8 (2017) 15630.
DOI URL |
[42] | D.R. Dreyer, S. Murali, Y. Zhu, R.S. Ruoff, C.W. Bielawski, J. Mater. Chem, 21 (2011) 3443-3447. |
[43] |
C. Xiong, T. Li, A. Dang, T. Zhao, H. Li, H. Lv, J. Power Sources 306 (2016) 602-610.
DOI URL |
[44] | C. Zhu, G. Fang, S. Liang, Z. Chen, Z. Wang, J. Ma, H. Wang, B. Tang, X. Zheng, J. Zhou, Energy Storage Mater. 24 (2020) 394-401. |
[45] |
E. Saputra, S. Muhammad, H. Sun, H.-M. Ang, M.O. Tadé, S. Wang, Appl. Catal. B: Environ. 142-143 (2013) 729-735.
DOI URL |
[46] | C.V.V.M. Gopi, R. Vinodh, S. Sambasivam, I.M. Obaidat, S. Singh, H.J. Kim, Chem.Eng. J. 381 (2020), 122640. |
[47] |
Z. bai, Z. Ju, C. Guo, Y. Qian, B. Tang, S. Xiong, Nanoscale 6 (2014) 3268-3273.
DOI URL |
[48] |
K. Zeng, X. Li, Z. Wang, H. Guo, J. Wang, T. Li, W. Pan, K. Shih, Electrochim. Acta 247 (2017) 795-802.
DOI URL |
[49] |
X. Tao, J. Zhang, Y. Xia, H. Huang, J. Du, H. Xiao, W. Zhang, Y. Gan, J. Mater. Chem. A 2 (2014) 2290-2296.
DOI URL |
[50] |
C. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Angew. Chem. Int. Ed. 53 (2014) 1488-1504.
DOI URL |
[51] |
Z. Yi, Q. Han, P. Zan, Y. Cheng, Y. Wu, L. Wang, J. Mater. Chem. A 4 (2016) 12850-12857.
DOI URL |
[52] |
Y. Feng, X.Y. Yu, U. Paik, Chem. Commun. 52 (2016) 6269-6272.
DOI URL |
[53] |
Y. Zhang, C.W. Foster, C.E. Banks, L. Shao, H. Hou, G. Zou, J. Chen, Z. Huang, X. Ji, Adv. Mater. 28 (2016) 9391-9399.
DOI URL |
[54] |
D. Wu, J. Ye, L. Chen, Y. Wang, K. Fang, M. Xie, L. Peng, X. Guo, W. Ding, RSC Adv. 6 (2016) 57009-57012.
DOI URL |
[55] |
X. Li, L. Qiao, D. Li, X. Wang, W. Xie, D. He, J. Mater. Chem. A 1 (2013) 6400-6406.
DOI URL |
[56] |
G. Zhou, D.W. Wang, F. Li, L. Zhang, N. Li, Z.S. Wu, L. Wen, G.Q. Lu, H.M. Cheng, Chem. Mater. 22 (2010) 5306-5313.
DOI URL |
[57] |
J.H. Um, K. Palanisamy, M. Jeong, H. Kim, W.S. Yoon, ACS Nano 13 (2019) 5674-5685.
DOI URL |
[58] |
M. Jing, J. Wang, H. Hou, Y. Yang, Y. Zhang, C. Pan, J. Chen, Y. Zhu, X. Ji, J. Mater. Chem. A 3 (2015) 16824-16830.
DOI URL |
[59] | J. Zhang, T. He, W. Zhang, J. Sheng, I.S. Amiinu, Z. Kou, J. Yang, L. Mai, S. Mu, Adv. Eng. Mater. 7 (2017), 1602092. |
[1] | Zuoting Yang, Ke Yang, Yuhong Cui, Tariq Shah, Mudasir Ahmad, Qiuyu Zhang, Baoliang Zhang. Synthesis of surface imprinted polymers based on wrinkled flower-like magnetic graphene microspheres with favorable recognition ability for BSA [J]. J. Mater. Sci. Technol., 2021, 74(0): 203-215. |
[2] | Yabin Hao, Minghe Fang, Chuan Xu, Zhe Ying, Han Wang, Rui Zhang, Hui-Ming Cheng, You Zeng. A graphene-laminated electrode with high glucose oxidase loading for highly-sensitive glucose detection [J]. J. Mater. Sci. Technol., 2021, 66(0): 57-63. |
[3] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[4] | Weiwei Xiao, Na Ni, Xiaohui Fan, Xiaofeng Zhao, Yingzheng Liu, Ping Xiao. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide [J]. J. Mater. Sci. Technol., 2021, 60(0): 70-76. |
[5] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
[6] | Yuwei Ye, Hao Chen, Yangjun Zou, Haichao Zhao. Study on self-healing and corrosion resistance behaviors of functionalized carbon dot-intercalated graphene-based waterborne epoxy coating [J]. J. Mater. Sci. Technol., 2021, 67(0): 226-236. |
[7] | Zhi-Jia Zhang, Wei-Jie Li, Shu-Lei Chou, Chao Han, Hua-Kun Liu, Shi-Xue Dou. Effects of carbon on electrochemical performance of red phosphorus (P) and carbon composite as anode for sodium ion batteries [J]. J. Mater. Sci. Technol., 2021, 68(0): 140-146. |
[8] | Xin Wang, Jiaqian Zhu, Xiang Yu, Xionghui Fu, Yi Zhu, Yuanming Zhang. Enhanced removal of organic pollutant by separable and recyclable rGH-PANI/BiOI photocatalyst via the synergism of adsorption and photocatalytic degradation under visible light [J]. J. Mater. Sci. Technol., 2021, 77(0): 19-27. |
[9] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
[10] | Jian Han, Xiaonan Tang, Shaofan Ge, Ying Shi, Chengzhi Zhang, Feng Li, Shuo Bai. Si/C particles on graphene sheet as stable anode for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 80(0): 259-265. |
[11] | Jin Bai, Xiao Chen, Emilia Olsson, Huimin Wu, Shiquan Wang, Qiong Cai, Chuanqi Feng. Synthesis of Bi2S3/carbon nanocomposites as anode materials for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 50(0): 92-102. |
[12] | Geng He, Feifei Qin, Chunxiang Xu, Chinhua Wang, Yu Xu, Bing Cao, Ke Xu. Double-triangular whispering-gallery mode lasing from a hexagonal GaN microdisk grown on graphene [J]. J. Mater. Sci. Technol., 2020, 53(0): 140-145. |
[13] | Yongqiang Liu, Xin Wang, Jiyu Cai, Xiaoxiao Han, Dongsheng Geng, Jianlin Li, Xiangbo Meng. Atomic-scale tuned interface of nickel-rich cathode for enhanced electrochemical performance in lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 54(0): 77-86. |
[14] | Iftikhar Ahmad, Mohammad Islam, Nuha Al Habis, Shahid Parvez. Hot-pressed graphene nanoplatelets or/and zirconia reinforced hybrid alumina nanocomposites with improved toughness and mechanical characteristics [J]. J. Mater. Sci. Technol., 2020, 40(0): 135-145. |
[15] | Poulami Hota, Milon Miah, Saptasree Bose, Diptiman Dinda, Uttam K. Ghorai, Yan-Kuin Su, Shyamal K. Saha. Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application [J]. J. Mater. Sci. Technol., 2020, 40(0): 196-203. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||