J. Mater. Sci. Technol. ›› 2021, Vol. 80: 1-12.DOI: 10.1016/j.jmst.2020.06.056
• Research Article • Next Articles
Liang-Liang Zhang, Lin-Jie Zhang*(), Jian Long, Xiang-Dong Ding, Jun Sun, Yuan-Jun Sun
Received:
2020-05-03
Accepted:
2020-06-16
Published:
2020-12-17
Online:
2020-12-17
Contact:
Lin-Jie Zhang
About author:
* E-mail address: zhanglinjie@mail.xjtu.edu.cn (L.-J. Zhang).Liang-Liang Zhang, Lin-Jie Zhang, Jian Long, Xiang-Dong Ding, Jun Sun, Yuan-Jun Sun. Improvement in the weldability of molybdenum alloy by pre-welding solid carburising[J]. J. Mater. Sci. Technol., 2021, 80: 1-12.
Joints | Processing methods | ||
---|---|---|---|
Pre-welding carburising | Carb.-W | Carb.-100-W joint | First carburising for 100 h at 1200 °C, then laser beam welding |
Carb.-150-W joint | First carburising for 150 h at 1200 °C, then laser beam welding | ||
Carb.-200-W joint | First carburising for 200 h at 1200 °C, then laser beam welding | ||
AT-W | AT-100-W joint | First annealing for 100 h at 1200 °C, then laser beam welding | |
AT-150-W joint | First annealing for 150 h at 1200 °C, then laser beam welding | ||
AT-200-W joint | First annealing for 200 h at 1200 °C, then laser beam welding | ||
Post-welding carburising | Carb. | Carb.-100 joint | First laser beam welding, then carburising for 100 h at 1200 °C |
Carb.-150 joint | First laser beam welding, then carburising for 150 h at 1200 °C | ||
Carb.-200 joint | First laser beam welding, then carburising for 200 h at 1200 °C | ||
AT | AT-150 joint | Annealing for 150 h at 1200 °C | |
Without carburising | LW | LW joint | Weld joints created by laser direct melting (LDM), Mo plates without any treatments |
Table 1 Joints treated by different methods.
Joints | Processing methods | ||
---|---|---|---|
Pre-welding carburising | Carb.-W | Carb.-100-W joint | First carburising for 100 h at 1200 °C, then laser beam welding |
Carb.-150-W joint | First carburising for 150 h at 1200 °C, then laser beam welding | ||
Carb.-200-W joint | First carburising for 200 h at 1200 °C, then laser beam welding | ||
AT-W | AT-100-W joint | First annealing for 100 h at 1200 °C, then laser beam welding | |
AT-150-W joint | First annealing for 150 h at 1200 °C, then laser beam welding | ||
AT-200-W joint | First annealing for 200 h at 1200 °C, then laser beam welding | ||
Post-welding carburising | Carb. | Carb.-100 joint | First laser beam welding, then carburising for 100 h at 1200 °C |
Carb.-150 joint | First laser beam welding, then carburising for 150 h at 1200 °C | ||
Carb.-200 joint | First laser beam welding, then carburising for 200 h at 1200 °C | ||
AT | AT-150 joint | Annealing for 150 h at 1200 °C | |
Without carburising | LW | LW joint | Weld joints created by laser direct melting (LDM), Mo plates without any treatments |
Fig. 2. (a) Metallographic images of the cross-sections of the Mo laser weld joints: (a) Carb.-150-W joint; (b), (c), and (d) FZ, heat-affected zone (HAZ), and BM of (a), respectively; (e) AT-150-W joint; (f), (g), and (h) FZ, HAZ, and BM of (e), respectively; (i) Carb.-150 joint [32]; (j), (k), and (l) FZ, HAZ, and BM of (i), respectively [32]; (m) LW joint; (n), (o), and (p) FZ, HAZ, and BM of (m), respectively.
Position | Test No. | Element content (wt%) | |||
---|---|---|---|---|---|
N | O | C | Mo | ||
Fusion zone | 1 | 0 | 0.699 | 0.339 | 99.699 |
2 | 0 | 0.643 | 0.251 | 99.213 | |
3 | 0 | 0.578 | 0.333 | 99.633 | |
4 | 0.301 | 0.384 | 0.296 | 99.921 | |
Average | 0.075 | 0.576 | 0.305 | 99.617 | |
Heat-affected zone | 5 | 0.190 | 0.155 | 0.224 | 99.105 |
6 | 0.183 | 0.281 | 0.184 | 99.538 | |
7 | 0 | 0.679 | 0.218 | 100.926 | |
8 | 0.165 | 0.681 | 0.377 | 99.824 | |
Average | 0.135 | 0.449 | 0.251 | 99.848 | |
Base metal | 9 | 0 | 0.759 | 0.324 | 98.740 |
10 | 0 | 0.638 | 0.252 | 99.561 | |
11 | 0.102 | 0.625 | 0.246 | 99.690 | |
12 | 0 | 0.816 | 0.182 | 99.288 | |
Average | 0.026 | 0.710 | 0.251 | 99.320 |
Table 2 Compositions of the different zones in Fig. 3(a).
Position | Test No. | Element content (wt%) | |||
---|---|---|---|---|---|
N | O | C | Mo | ||
Fusion zone | 1 | 0 | 0.699 | 0.339 | 99.699 |
2 | 0 | 0.643 | 0.251 | 99.213 | |
3 | 0 | 0.578 | 0.333 | 99.633 | |
4 | 0.301 | 0.384 | 0.296 | 99.921 | |
Average | 0.075 | 0.576 | 0.305 | 99.617 | |
Heat-affected zone | 5 | 0.190 | 0.155 | 0.224 | 99.105 |
6 | 0.183 | 0.281 | 0.184 | 99.538 | |
7 | 0 | 0.679 | 0.218 | 100.926 | |
8 | 0.165 | 0.681 | 0.377 | 99.824 | |
Average | 0.135 | 0.449 | 0.251 | 99.848 | |
Base metal | 9 | 0 | 0.759 | 0.324 | 98.740 |
10 | 0 | 0.638 | 0.252 | 99.561 | |
11 | 0.102 | 0.625 | 0.246 | 99.690 | |
12 | 0 | 0.816 | 0.182 | 99.288 | |
Average | 0.026 | 0.710 | 0.251 | 99.320 |
Position | Test No. | Elements (wt%) | |||
---|---|---|---|---|---|
N | O | C | Mo | ||
Fusion zone | 1 | 0.188 | 0.604 | 0.523 | 99.567 |
2 | 0.166 | 0.542 | 0.773 | 99.902 | |
3 | 0.114 | 0.384 | 0.750 | 99.394 | |
4 | 0.102 | 0.299 | 1.042 | 99.825 | |
Average | 0.143 | 0.457 | 0.772 | 99.672 | |
Heat-affected zone | 5 | 0.088 | 0.432 | 1.132 | 98.465 |
6 | 0.092 | 0.485 | 1.296 | 99.033 | |
7 | 0.132 | 0.667 | 1.110 | 100.082 | |
8 | 0 | 0.005 | 0.953 | 98.541 | |
Average | 0.078 | 0.397 | 1.123 | 99.030 | |
Base metal | 9 | 0.151 | 0.451 | 1.366 | 99.668 |
10 | 0 | 0.077 | 0.786 | 99.529 | |
11 | 0.130 | 0.521 | 1.188 | 99.460 | |
12 | 0 | 0.225 | 0.997 | 99.817 | |
Average | 0.070 | 0.318 | 1.084 | 99.619 |
Table 3 Compositions of the different zones in Fig. 3(b).
Position | Test No. | Elements (wt%) | |||
---|---|---|---|---|---|
N | O | C | Mo | ||
Fusion zone | 1 | 0.188 | 0.604 | 0.523 | 99.567 |
2 | 0.166 | 0.542 | 0.773 | 99.902 | |
3 | 0.114 | 0.384 | 0.750 | 99.394 | |
4 | 0.102 | 0.299 | 1.042 | 99.825 | |
Average | 0.143 | 0.457 | 0.772 | 99.672 | |
Heat-affected zone | 5 | 0.088 | 0.432 | 1.132 | 98.465 |
6 | 0.092 | 0.485 | 1.296 | 99.033 | |
7 | 0.132 | 0.667 | 1.110 | 100.082 | |
8 | 0 | 0.005 | 0.953 | 98.541 | |
Average | 0.078 | 0.397 | 1.123 | 99.030 | |
Base metal | 9 | 0.151 | 0.451 | 1.366 | 99.668 |
10 | 0 | 0.077 | 0.786 | 99.529 | |
11 | 0.130 | 0.521 | 1.188 | 99.460 | |
12 | 0 | 0.225 | 0.997 | 99.817 | |
Average | 0.070 | 0.318 | 1.084 | 99.619 |
Fig. 5. (a) Nanoindentation hardness of cross-sections of the FZ of the Carb.-100-W, Carb.-150-W, Carb.-200-W, AT-150-W, SC-150, AT-150, and LW joints; indentations at the (b) grain boundary and (c) grain interior.
Fig. 7. XPS analysis results (recorded with monochromatic Al-Kα) for a cross-section of the FZ in the Carb.-150-W joint: (a) XPS survey spectrum of the FZ; (b) C 1s spectrum of the FZ.
Fig. 11. EBSD results of the cross-section of the Carb.-150-W joint: (a) IPF mapping; (b) enlarged image of zone A in (a); (c) mapping of the phase distribution (Phases) in (b); (d) enlarged image of zone B in (a); (e) mapping of the phase distribution (Phases) in (d).
Fig. 12. EBSD results of the cross-section of the Carb.-100-W joint: (a) IPF mapping; (b) enlarged image of zone A in (a); (c) mapping of the phase distribution (Phases) in (b).
Fig. 13. EBSD results of the cross-section of the Carb.-200-W joint: (a) IPF mapping; (b) enlarged image of zone A in (a); (c) mapping of the phase distribution (Phases) in (b); (d) enlarged image of zone B in (a); (e) mapping of the phase distribution (Phases) in (d).
Fig. 15. Schematic diagrams of the tensile fracturing process of a carburised joint: (a) dispersed Mo2C particles at the Mo grain boundary (such as Carb., Carb.-100-W, and Carb.-150-W joints); (b) reticulated Mo2C phase at the Mo grain boundaries (such as Carb.-200-W joints).
Fig. 16. (a) Constitution diagram of the Mo-C system. The liquidus is represented by the solid line. The dotted lines correspond to its metastable regions, and the chain-dotted lines correspond to the variations in the equilibrium of the liquid phases with molybdenum and Mo2C without considering the solubility of carbon in β-Mo [ 35]; (b) interactions of carbon, molybdenum, and oxygen in the FZ of the Carb.-W joints during the thermal welding cycle.
[1] |
S.J. Zinklea, Acta Mater. 61 (2013) 735-758.
DOI URL |
[2] | B.A. Pint, K.A. Terrani, Y. Yamamoto, L.L. Snead, Metall. Mater. Trans. E 2. (2015) 190-196. |
[3] |
K.A. Terrani, J. Nucl. Mater. 501 (2018) 13-30.
DOI URL |
[4] |
M.X. Xie, Y.X. Li, X.T. Shang, X.W. Wang, J.Y. Pei, Materials 12 (2019) 1433.
DOI URL |
[5] |
J.B. Brosse, R. Fillit, M. Biscondi, Scr. Metall. 15 (1981) 619-623.
DOI URL |
[6] |
T. Watanabe, S. Tsurekawa, Acta Mater. 47 (1999) 4171-4185.
DOI URL |
[7] |
M.X. Xie, Y.X. Li, X.T. Shang, X.W. Wang, J.Y. Pei, Metals 9 (2019) 640.
DOI URL |
[8] |
M.K. Miller, E.A. Kenik, M.S. Mousa, K.F. Russell, A.J. Bryhan, Scr. Mater. 46 (2002) 299-303.
DOI URL |
[9] |
M.K. Miller, A.J. Bryhan, Mater. Sci. Eng. A 327 (2002) 80-83.
DOI URL |
[10] |
A.V. Krajnikov, F. Morito, V.N. Slyunyaev, Int. J. Refract. Met. Hard Mater. 15 (1997) 325-339.
DOI URL |
[11] |
D.L.K. Leitner (née Babinsky), W. Knabl, M. Eidenberger-Schober, K. Huber, A. Lorich, H. Clemens, V. Maier-Kiener, Scr. Mater. 156 (2018) 60-63.
DOI URL |
[12] | A. Kumar, B.L. Eyre, Proc. Royal Soc. London 370 (1980) 431-458. |
[13] |
H. Xia, W. Tao, L. Li, C. Tan, K. Zhang, N. Ma, Opt. Laser Technol. 122 (2020), 105845.
DOI URL |
[14] |
A. Chaudhuri, A.N. Behera, A. Sarkar, R. Kapoor, R.K. Ray, S. Suwas, Acta Mater. 164 (2019) 153-164.
DOI |
[15] | S. Tsurekawa, S. Kokubun, T. Watanabe, Mater. Sci.Forum 304-306 (1999)687-692. |
[16] | G.S. Rohrer, J. Mater. Sci, 46 (2011) 5881-5895. |
[17] |
K. Leitner, P.J. Felfer, D. Holec, J. Cairney, W. Knabl, A. Lorich, H. Clemens, S. Primig, Mater. Des. 135 (2017) 204-212.
DOI URL |
[18] |
Y. Hiraoka, S. Yoshimura, Int. J. Refract. Met. Hard Mater. 13 (1995) 205-210.
DOI URL |
[19] |
Y. Hiraoka, S. Yoshimura, K. Takebe, Int. J. Refract. Met. Hard Mater. 12 (1993) 211-216.
DOI URL |
[20] | Y. Hiraoka, K. Tanigawa, M.K. Yoo, J. Choi, Mater. Trans. 36 (2007) 469-471. |
[21] | J.Y. Pei, L.J. Zhang, L.L. Zhang, J. Long, J.X. Zhang, S.J. Na, J. Mater. Proc, Technol. 267 (2019) 10. |
[22] |
K.S. Hwang, H.S. Huang, Acta Mater. 51 (2003) 3915-3926.
DOI URL |
[23] |
K.S. Hwang, H.S. Huang, Mater. Chem. Phys. 67 (2001) 92-100.
DOI URL |
[24] |
L. Katharina, D. Lutz, K. Wolfram, M. Eidenbergerschober, K. Huber, A. Lorich, H. Clemens, V. Maierkiener, Scr. Mater. 156 (2018) 60-63.
DOI URL |
[25] |
Y. Hiraoka, M. Okada, R. Watanabe, J. Less-Common Metals 75 (1980) 31-42.
DOI URL |
[26] |
R. Kishore, A. Kumar, J. Nucl. Mater 101 (1981) 16-27.
DOI URL |
[27] |
Y. Hiraoka, K. Imamura, T. Kadokura, Y. Yamamoto, J. Alloys Compd 489 (2010) 42-46.
DOI URL |
[28] |
Y. Hiraoka, M. Okada, H. Irie, J. Nucl. Mater 155-157 (1988) 381-385.
DOI URL |
[29] | Y. Hiraoka, Mater. Trans. 31 (1990) 861-864. |
[30] |
K. Tsuya, N. Aritomi, J. Less-Common Metals 15 (1968) 245-257.
DOI URL |
[31] |
D. Scheiber, R. Pippan, P. Puschnig, A. Ruban, L. Romaner, Int. J. Refract. Metals Hard Mater. 60 (2016) 75-81.
DOI URL |
[32] |
L.L. Zhang, L.J. Zhang, J. Long, X. Sun, J.X. Zhang, S.J. Na, Mater. Des. 181 (2019), 107957.
DOI URL |
[33] |
Y. Hiraoka, M. Okada, R. Watanabe, J. Nucl. Mater 83 (1979) 305-312.
DOI URL |
[34] | Y. Hiraoka, H. Irie, M. Okad, Proc. Jpn. Welding Eng.Soc. 5 (1987) 522-527. |
[35] |
V.M. Danilenko, T.Y. Velikanova, A.A. Rubashevskii, G.M. Lukashenko, Soviet Powder Metall. Metal Ceram. 24 (1985) 291-296.
DOI URL |
[36] | C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of Xray Photoelectron Specroscopy, Perkin-Elmer Corporation Physical Electronics Division, U.S.A, 1979, pp. 32. |
[37] |
J.D. Oxley, M.M. Mdleleni, K.S. Suslick, Catal. Today 88 (2004) 139-151.
DOI URL |
[38] |
M.J. Ledoux, C.P. Huu, J. Guille, H. Dunlop, J. Catal 134 (1992) 383-398.
DOI URL |
[39] |
P. Delporte, F.D.R. Meunier, C. Pham-Huu, P. Vennegues, M.J. Ledoux, J. Guille, Catal. Today 23 (1995) 251-267.
DOI URL |
[40] |
L.L. Zhang, L.J. Zhang, J. Long, J. Ning, J.X. Zhang, S.J. Na, Mater. Des. 169 (2019), 107681.
DOI URL |
[41] |
E. Smith, Acta Metall. 14 (1966) 985-989.
DOI URL |
[42] |
E. Smith, Acta Metall. 14 (1966) 991-996.
DOI URL |
[43] |
G. Hahn, A. Rosenfield, Acta Metall. 14 (1966) 1815-1825.
DOI URL |
[44] | T. Lindsey, G. Datec, C. Richards, (1970) Acta Metall 192-203. |
[45] | E. Smith, Int. J. Fract. Mech. 4 (1968) 131-145. |
[46] |
C.J. Rosa, Metall. Trans. A 14 (1983) 199-202.
DOI URL |
[47] |
P. Shewmon, Acta Metall. 8 (1960) 605-611.
DOI URL |
[48] | H. Okamoto, M.E. Schlesinger, E.M. Mueller, ASM Handbook: Vol. 3 Alloy Phase Diagrams, second ed., ASM International, U.S.A, 2016, pp. 532-533. |
[1] | Zibo Pei, Xuequn Cheng, Xiaojia Yang, Qing Li, Chenhan Xia, Dawei Zhang, Xiaogang Li. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors [J]. J. Mater. Sci. Technol., 2021, 64(0): 214-221. |
[2] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
[3] | Yuwei Ye, Hao Chen, Yangjun Zou, Haichao Zhao. Study on self-healing and corrosion resistance behaviors of functionalized carbon dot-intercalated graphene-based waterborne epoxy coating [J]. J. Mater. Sci. Technol., 2021, 67(0): 226-236. |
[4] | Haiyang Yu, Zhenzhu Wang, Jiangfeng Ni, Liang Li. Freestanding nanosheets of 1T-2H hybrid MoS2 as electrodes for efficient sodium storage [J]. J. Mater. Sci. Technol., 2021, 67(0): 237-242. |
[5] | Weihua Gu, Xiaoqing Cui, Jing Zheng, Jiwen Yu, Yue Zhao, Guangbin Ji. Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation [J]. J. Mater. Sci. Technol., 2021, 67(0): 265-272. |
[6] | Wang Yang, Bo Jiang, Zhihui Liu, Rui Li, Liqiang Hou, Zhengxuan Li, Yongli Duan, Xingru Yan, Fan Yang, Yongfeng Li. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 70(0): 214-223. |
[7] | K. Ma, Z.Y. Liu, X.X. Zhang, B.L. Xiao, Z.Y. Ma. Microstructure evolution and hot deformation behavior of carbon nanotube reinforced 2009Al composite with bimodal grain structure [J]. J. Mater. Sci. Technol., 2021, 70(0): 73-82. |
[8] | Tingting Xu, Ping Niu, Shulan Wang, Li Li. High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3 [J]. J. Mater. Sci. Technol., 2021, 74(0): 128-135. |
[9] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[10] | Wenqiang Li, Yiming Zhao, Ning Liu, Changji Li, Ruiming Ren, Dayong Cai, Hongwang Zhang. Strain gradient induced grain refinement far below the size limit in a low carbon hypoeutectoid steel (0.19wt% C) via pipe inner surface grinding treatment [J]. J. Mater. Sci. Technol., 2021, 78(0): 155-169. |
[11] | Wenjuan Wang, Yan Zhao, Yongguang Zhang, Ning Liu, Zhumabay Bakenov. Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 69-77. |
[12] | Shumin Zhang, Hu Dong, Changsheng An, Zhongfu Li, Difa Xu, Kaiqiang Xu, Zhaohui Wu, Jie Shen, Xiaohua Chen, Shiying Zhang. One-pot synthesis of array-like sulfur-doped carbon nitride with covalently crosslinked ultrathin MoS2 cocatalyst for drastically enhanced photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2021, 75(0): 59-67. |
[13] | Yanrong Lv, Chao Han, Ye Zhu, Tianao Zhang, Shuo Yao, Zhangxing He, Lei Dai, Ling Wang. Recent advances in metals and metal oxides as catalysts for vanadium redox flow battery: Properties, structures, and perspectives [J]. J. Mater. Sci. Technol., 2021, 75(0): 96-109. |
[14] | Xuepeng Ni, Zhe Cui, Ning Jiang, Huifang Chen, Qilin Wu, Anqi Ju, Meifang Zhu. Hollow multi-nanochannel carbon nanofiber/MoS2 nanoflower composites as binder-free lithium-ion battery anodes with high capacity and ultralong-cycle life at large current density [J]. J. Mater. Sci. Technol., 2021, 77(0): 169-177. |
[15] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||