J. Mater. Sci. Technol. ›› 2022, Vol. 106: 118-127.DOI: 10.1016/j.jmst.2021.08.014
• Research Article • Previous Articles Next Articles
Iva Milisavljevic, Guangran Zhang, Yiquan Wu()
Received:
2021-05-11
Revised:
2021-08-12
Accepted:
2021-08-14
Published:
2022-04-20
Online:
2021-10-01
Contact:
Yiquan Wu
About author:
*E-mail address: wuy@alfred.edu (Y.Wu).Iva Milisavljevic, Guangran Zhang, Yiquan Wu. Solid-state single-crystal growth of YAG and Nd: YAG by spark plasma sintering[J]. J. Mater. Sci. Technol., 2022, 106: 118-127.
Fig. 1. (a) Schematic of the YAG and Nd:YAG sample preparation for SPS. (b) Magnified cross-section of the powder sample with the embedded single-crystal seed. (c) Photograph of the YAG sample after SPS (red dashed line indicates the direction of sample cutting for characterization purposes).
Fig. 3. SEM images of the seed/single-crystal/polycrystal interface in YAG ceramic samples sintered for (a) 0, (b) 10, (c) 30, (d) 60, and (e) 90 min at 1150 °C by SPS.
Fig. 4. (a) Graph showing the trend of the growth distance (black) and inverse average grain size (red), which is proportional to the driving force for single-crystal growth, as a function of sintering time. (b) Plot demonstrating an exponential decrease in the YAG single crystal growth rate with sintering time.
Fig. 5. SEM images of the seed/single-crystal/polycrystal interface in (a) undoped samples and (b) 3 at.% and (c) 5 at.% Nd3+-doped YAG samples obtained via SPS at 1150 °C for 60 min.
Fig. 6. Plots of the single-crystal growth distance (black) and the average grain size of the polycrystalline matrix (red) as a function of Nd3+ doping concentration in YAG samples sintered at 1150 °C for 60 min.
Fig. 8. EDS line scan results acquired for cross-sections of (a) 3 at.% and (b) 5 at.% Nd:YAG samples. The graphs present the relative percent ratio between Nd and Y in the samples.
[1] | G. Müller, J.Friedrich, in: Encyclopedia of Condensed Matter Physics, Elsevier Ltd., OxfordOxford, 2005, pp. 262-274. |
[2] | P. Capper, in: Springer Handbook of Electronic and Photonic Materials, Springer International Publishing, Cham, 2017, pp. 269-292. |
[3] |
I. Milisavljevic, Y. Wu, BMC Mat. 2 (2020) 1-26.
DOI URL |
[4] |
S.J.L. Kang, J.H. Park, S.Y. Ko, H.Y. Lee, J. Am. Ceram. Soc. 98 (2015) 347-360.
DOI URL |
[5] | S.J.L. Kang, in: Sintering: Densification, Grain Growth & Microstructure, Elsevier, Oxford, 2005, pp. 117-135. |
[6] |
M. Jiang, C.A. Randall, H. Guo, G. Rao, R. Tu, Z. Gu, G. Cheng, X. Liu, J. Zhang, Y. Lik, J. Am. Ceram. Soc. 98 (2015) 2988-2996.
DOI URL |
[7] |
S.J.L. Kang, S.Y. Ko, S.Y. Moon, J. Ceram. Soc. Jpn. 124 (2016) 259-267.
DOI URL |
[8] |
D. Lee, H. Vu, H. Sun, T.L. Pham, D.T. Nguyen, J.S. Lee, J.G. Fisher, Ceram. Int. 42 (2016) 18894-18901.
DOI URL |
[9] |
J.G. Fisher, A. Bencan, M. Kosec, J. Am. Ceram. Soc. 91 (2008) 1503-1507.
DOI URL |
[10] | H.T. Oh, H.J. Joo, M.C. Kim, H.Y. Lee, J. Korean Ceram. Soc. 55 (2018) 166-173. |
[11] |
C.W. Ahn, H.Y. Lee, G. Han, S. Zhang, S.Y. Choi, J.J. Choi, J.W. Kim, W.H. Yoon, J.H. Choi, D.S. Park, B.D. Hahn, J. Ryu, Sci. Rep. 5 (2015) 17656.
DOI URL |
[12] |
E. Uwiragiye, M.U. Farooq, S.H. Moon, T.L. Pham, D.T. Nguyen, J.S. Lee, J.G. Fisher, J. Eur. Ceram. Soc. 37 (2017) 4597-4607.
DOI URL |
[13] |
J. Yang, Q. Yang, Y. Li, Y. Liu, J. Eur. Ceram. Soc. 36 (2016) 541-550.
DOI URL |
[14] |
J.H. Park, S.J.L. Kang, AIP Adv. 6 (2016) 015310.
DOI URL |
[15] |
Y.I. Jung, S.Y. Choi, S.J.L. Kang, J. Am. Ceram. Soc. 86 (2003) 2228-2230.
DOI URL |
[16] | J.Y. Lee, H.T. Oh, H.Y. Lee, J. Korean Ceram. Soc. 53 (2016) 171-177. |
[17] |
C. Scott, M. Kaliszewski, C. Greskovich, L. Levinson, J. Am. Ceram. Soc. 85 (2002) 1275-1280.
DOI URL |
[18] |
G.S. Thompson, P.A. Henderson, M.P. Harmer, J. Am. Ceram. Soc. 87 (2004) 1879-1882.
DOI URL |
[19] |
S. Nakayama, A. Ikesue, Y. Higuchi, M. Sugawara, M. Sakamoto, J. Eur. Ceram. Soc. 33 (2013) 207-210.
DOI URL |
[20] |
R. Kappenberger, S. Aswartham, F. Scaravaggi, C.G.F. Blum, M.I. Sturza, A.U.B. Wolter, S. Wurmehl, B. Büchner, J. Cryst. Growth 483 (2018) 9-15.
DOI URL |
[21] |
J.G. Fisher, H. Sun, Y.G. Kook, J.S. Kim, P.G. Le, J. Magn. Magn. Mater. 416 (2016) 384-390.
DOI URL |
[22] |
A. Ikesue, Y.L. Aung, T. Yoda, S. Nakayama, T. Kamimura, Opt. Mater. 29 (2007) 1289-1294.
DOI URL |
[23] |
S.N. Bagayev, A. A. Kaminskii, Y.L. Kopylov, I.M. Kotelyanskii, V.B. Kravchenko, V.A. Luzanov, Opt. Mater. 35 (2013) 757-760.
DOI URL |
[24] |
G. Zhang, B. Jiang, P. Zhang, Y. Jiang, S. Chen, L. Zhang, Ceram. Int. 44 (2018) 18949-18954.
DOI URL |
[25] |
R. Chaim, G. Chevallier, A. Weibel, C. Estournes, J. Mater. Sci. 53 (2018) 3087-3105.
DOI URL |
[26] |
J.K. Park, U.J. Chung, D.Y. Kim, J. Electroceram. 17 (2006) 509-513.
DOI URL |
[27] | M. Gürbüz, E. Ayas, A. Dogan, J. Ceram, J. Ceram. Process. Res. 17 (2016) 36-40. |
[28] |
Y. Liu, Y. Li, Y. Wu, J. Am. Ceram. Soc. 100 (2017) 2402-2406.
DOI URL |
[29] |
M. Saleh, S. Kakkireni, J. McCloy, K.G. Lynn, Opt. Mater. Express 10 (2020) 632-644.
DOI URL |
[30] |
G. Zhang, D. Carloni, Y. Wu, J. Am. Ceram. Soc. 103 (2020) 839-848.
DOI URL |
[31] |
M.I. Mendelson, J. Am. Ceram. Soc. 52 (1969) 443-446.
DOI URL |
[32] |
S.M. An, B.K. Yoon, S.Y. Chung, S.J.L. Kang, Acta Mater. 60 (2012) 4531-4539.
DOI URL |
[33] | S. J.L. Kang, Y.I. Jung, S.H. Jung, J.G. Fisher, in: Microstructural Design of Ad- vanced Engineering Materials, Wiley-VCH Verlag GmbH & Co. KGaA, Wein- heim, Germany, 2013, pp. 299-322. |
[34] | S.J.L. Kang, Sintering: Densification, Grain Growth, and Microstructure, Elsevier Butterworth-Heinemann, 2005. |
[35] |
M.K. Kang, D.Y. Kim, N.M. Hwang, J. Eur. Ceram. Soc. 22 (2002) 603-612.
DOI URL |
[36] |
P. Kabakov, C. Dean, V. Kurusingal, Z. Cheng, H.Y. Lee, S. Zhang, J. Mater. Chem. C 8 (2020) 7606-7649.
DOI URL |
[37] |
S. Kochawattana, A. Stevenson, S.H. Lee, M. Ramirez, V. Gopalan, J. Dumm, V.K. Castillo, G.J. Quarles, G.L. Messing, J. Eur. Ceram. Soc. 28 (2008) 1527-1534.
DOI URL |
[38] |
A.J. Stevenson, X. Li, M.A. Martinez, J.M. Anderson, D.L. Suchy, E.R. Kupp, E.C. Dickey, K.T. Mueller, G.L. Messing, J. Am. Ceram. Soc. 94 (2011) 1380-1387.
DOI URL |
[39] |
Q.J. Gan, B.X. Jiang, P.D. Zhang, Y.G. Jiang, C. Yang, W.C. Zhang, D.P. Luo, W.X. Li, L. Zhang, J. Inorg. Mater. 33 (2018) 107-112.
DOI URL |
[40] |
R. Simura, A. Yoshikawa, S. Uda, J. Cryst. Growth 311 (2009) 4763-4769.
DOI URL |
[41] |
J.H. Lee, B.N. Kim, B.K. Jang, Ceram. Int. 46 (2020) 4030-4034.
DOI URL |
[42] |
T. Irifune, K. Kawakami, T. Arimoto, H. Ohfuji, T. Kunimoto, T. Shinme, Nat. Commun. 7 (2016) 13753.
DOI PMID |
[43] |
S.H. Lee, S. Kochawattana, G.L. Messing, J.Q. Dumm, G. Quarles, V. Castillo, J. Am. Ceram. Soc. 89 (2006) 1945-1950.
DOI URL |
[44] |
F. Tang, J. Huang, W. Guo, W. Wang, B. Fei, Y. Cao, Opt. Mater. 34 (2012) 757-760.
DOI URL |
[1] | Kun Li, Luxin Liang, Peng Du, Zeyun Cai, Tao Xiang, Hiroyasu Kanetaka, Hong Wu, Guoqiang Xie. Mechanical properties and corrosion resistance of powder metallurgical Mg-Zn-Ca/Fe bulk metal glass composites for biomedical application [J]. J. Mater. Sci. Technol., 2022, 103(0): 73-83. |
[2] | Tao Xiang, Zeyun Cai, Peng Du, Kun Li, Zongwei Zhang, Guoqiang Xie. Dual phase equal-atomic NbTaTiZr high-entropy alloy with ultra-fine grain and excellent mechanical properties fabricated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2021, 90(0): 150-158. |
[3] | Jinseo Kim, Le Thai Duy, Hyunwoo Kang, Byungmin Ahn, Hyungtak Seo. Fluorine doping for improved thermoelectric properties of spark plasma sintered bismuth telluride [J]. J. Mater. Sci. Technol., 2021, 90(0): 225-235. |
[4] | Jing Bai, Die Liu, Jianglong Gu, Xinjun Jiang, Xinzeng Liang, Ziqi Guan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Excellent mechanical properties and large magnetocaloric effect of spark plasma sintered Ni-Mn-In-Co alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 46-51. |
[5] | Wanjun Yu, Yongting Zheng, Yongdong Yu. Precipitation mechanism and microstructural evolution of Al2O3/ZrO2(CeO2) solid solution powders consolidated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2020, 41(0): 149-158. |
[6] | Ji Zou, Guo-Jun Zhang, Zheng-Yi Fu. In-situ ZrB2- hBN ceramics with high strength and low elasticity [J]. J. Mater. Sci. Technol., 2020, 48(0): 186-193. |
[7] | J.S. Cha, D.H. Kim, H.Y. Hong, K. Park. Enhanced thermoelectric performance of spark plasma sintered p-type Ca3-xYxCo4O9+δ systems [J]. J. Mater. Sci. Technol., 2020, 55(0): 212-222. |
[8] | Qingzheng Jiang, Jie Song, Qingfang Huang, Sajjad Ur Rehman, Lunke He, Qingwen Zeng, Zhenchen Zhong. Enhanced magnetic properties and improved corrosion performance of nanocrystalline Pr-Nd-Y-Fe-B spark plasma sintered magnets [J]. J. Mater. Sci. Technol., 2020, 58(0): 138-144. |
[9] | Xu Wang, Nan Zhang, Yujie Zhong, Bailing Jiang, Langhong Lou, Jian Zhang, Jingyang Wang. Microstructure evolution and crystallography of directionally solidified Al2O3/Y3Al5O12 eutectic ceramics prepared by the modified Bridgman method [J]. J. Mater. Sci. Technol., 2019, 35(9): 1982-1988. |
[10] | Liu Qing, Wang Guofeng, Sui Xiaochong, Liu Yongkang, Li Xiao, Yang Jianlei. Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2019, 35(11): 2600-2607. |
[11] | Wang Qunchang, Chen Minghui, Shan Zhongmao, Sui Chengguo, Zhang Lin, Zhu Shenglong, Wang Fuhui. Comparative study of mechanical and wear behavior of Cu/WS2 composites fabricated by spark plasma sintering and hot pressing [J]. J. Mater. Sci. Technol., 2017, 33(11): 1416-1423. |
[12] | Wu Ziyi, Zhang Jinyong, Shi Taojie, Zhang Fan, Lei Liwen, Xiao Han, Fu Zhengyi. Fabrication of laminated TiB2-B4C/Cu-Ni composites by electroplating and spark plasma sintering [J]. J. Mater. Sci. Technol., 2017, 33(10): 1172-1176. |
[13] | Xiaopu Li, Chongyu Liu, Kun Luo, Mingzhen Ma, Riping Liu. Hot Deformation Behaviour of SiC/AA6061 Composites Prepared by Spark Plasma Sintering [J]. J. Mater. Sci. Technol., 2016, 32(4): 291-298. |
[14] | Li R.T.,K. Murugan Vinod,Dong Z.L.,Khor K.A.. Comparative Study on the Corrosion Resistance of Al-Cr-Fe Alloy Containing Quasicrystals and Pure Al [J]. J. Mater. Sci. Technol., 2016, 32(10): 1054-1058. |
[15] | Hefei Huang, Chao Yang, Massey de los Reyes, Yongfeng Zhou, Long Yan, Xingtai Zhou. Effect of Milling Time on the Microstructure and Tensile Properties of Ultrafine Grained Ni-SiC Composites at Room Temperature [J]. J. Mater. Sci. Technol., 2015, 31(9): 923-929. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||