Please wait a minute...
J. Mater. Sci. Technol.  2017, Vol. 33 Issue (11): 1416-1423    DOI: 10.1016/j.jmst.2017.06.014
Orginal Article Current Issue | Archive | Adv Search |
Comparative study of mechanical and wear behavior of Cu/WS2 composites fabricated by spark plasma sintering and hot pressing
Wang Qunchanga, Chen Minghuia*(), Shan Zhongmaob, Sui Chengguob, Zhang Linc, Zhu Shenglongd, Wang Fuhuia
a Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
b AVIC Chengdu Aircraft Design & Research Institute, Chengdu 610041, China;
c AVIC Chengdu Aircraft Industrial (Group) Co., Ltd, Chengdu 610041, China
d Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      

The mechanical and wear behavior of copper-tungsten disulfide (Cu/WS2) composites fabricated by spark plasma sintering (SPS) and hot pressing (HP) was investigated, comparatively. Results indicated that the addition of lubricant WS2 substantially reduced wear rate of the Cu matrix composites fabricated by SPS, and the optimum content of WS2 is 20?wt% with regard to the wear behavior. However, it affected a little to the wear rate while dramatically decreased the friction coefficient of the composite fabricated by HP. This difference in friction behavior of the self-lubricating composites fabricated by the two techniques was closely related to their different mechanical properties. Severe interfacial reaction occurred during spark plasma sintering, leading to brittle phase formation at interface.

Key words:  Metal-matrix composites (MMCs)      Hardness      Self-lubricating      Spark plasma sintering      Interfacial reaction     
Received:  28 February 2017     
Corresponding Authors:  Chen Minghui     E-mail:
About author: 

1 These two authors contributed equally to this paper.

Cite this article: 

Wang Qunchang, Chen Minghui, Shan Zhongmao, Sui Chengguo, Zhang Lin, Zhu Shenglong, Wang Fuhui. Comparative study of mechanical and wear behavior of Cu/WS2 composites fabricated by spark plasma sintering and hot pressing. J. Mater. Sci. Technol., 2017, 33(11): 1416-1423.

URL:     OR

Fig. 1.  Schematic image showing grinding ball and the wear trace.
Fig. 2.  XRD patterns of Cu/WS2 composites fabricated by SPS and HP.
Fig. 3.  SEM microstructures of SPS fabricated Cu/WS2 composites: (a) C10W; (b) C20W; (c) C30W.
Material 298 K 500 K 700 K 900 K 1100 K
Cu -9.9 -18.0 -26.2 -39.9 -52.9
WS2 -278.7 -295.6 -318.4 -345.6 -376.4
Cu2S -115.8 -145.3 -183.1 -226.2 -273.1
W -9.738 -17.7 -27.7 -39.3 -52.0
Table 1  Gibbs free energy (ΔG) for reactants and reaction products in Eq. (2) at different temperatures (kJ mol-1) [30].
Fig. 4.  High-magnification microstructure of SPS fabricated C20W composite (a) and corresponding EDS analysis at point 1 (b), point 2 (c) and point 3 (d).
Fig. 5.  SEM microstructures of HP fabricated C20W composite at (a) low and (b) high magnification.
Fig. 6.  Vickers hardness of Cu/WS2 composites fabricated by SPS and HP.
Fig. 7.  Surface characteristics of Cu/WS2 composites fabricated by SPS for (a) C10W, (b) C20W, (c) C30W and by HP for (d) C20W.
Fig. 8.  Friction coefficients of Cu/WS2 composites fabricated by SPS and HP.
Fig. 9.  Secondary electron SEM micrographs of worn surfaces of Cu/WS2 composites fabricated by SPS: (a) Cu; (b) C10W; (c) C20W; (d) C30W.
Fig. 10.  Secondary electron SEM micrograph of worn surface of HP fabricated C20W.
Fig. 11.  Wear rate of Cu/WS2 composites fabricated by SPS and HP.
[1] Y. Wu, F. Wang, Y. Cheng, N.A. Chen, Wear 205 (1997) 64-70.
[2] Z. Zhu, S. Bai, J. Wu, L. Xu, T. Li, Y. Ren, C. Liu, J. Mater. Sci. Technol. 31(2015) 325-330.
[3] N. Ao, D. Liu, S. Wang, Q. Zhao, X. Zhang, M. Zhang, J. Mater. Sci. Technol. 32(2016) 1071-1076.
[4] S.V. Prasad, P.K. Rothagi, J. Met. 39(1987) 22-26.
[5] S. Das, S.V. Prasad, T.R. Ramacandran, Wear 133 (1989) 173-187.
[6] C. Huang, W. Li, Y. Xie, M. Planche, H. Liao, G. Montavon, J. Mater. Sci. Technol. 33(2017) 338-346.
[7] C. Huang, W. Li, M. Planche, H. Liao, G. Montavon, J. Mater, Sci. Technol. (2016), .
[8] G. Gyawali, H. Kim, K. Tripathi, T. Kim, S. Lee, J. Mater. Sci. Technol. 30(2014) 796-802.
[9] W. Zhai, X. Shi, J. Yao, A.M.M.Ibrahim, Z. Xu, Q.Zhu, Y. Xiao, L. Chen, Q. Zhang, Compos. Part B Eng. 70(2015) 149-155.
[10] D. Xiang, K. Shan, Wear 260 (2016) 1112-1118.
[11] S. Dhanasekaran, R. Gnanamoorthy, J. Mater. Sci. Technol. 42(2007) 4659-4666.
[12] S. Raadnui, S. Mahathanabodee, R. Tongsri, Wear 265 (2008) 546-553.
[13] S. Mahathanabodee, T. Palathai, S. Raadnui, R. Tongsri, N. Sombatsompop, Mater. Des. 46(2013) 588-597.
[14] S. Mahathanabodee, T. Palathai, S. Raadnui, R. Tongsri, N. Sombatsompop, Wear 316 (2014) 37-48.
[15] D. Uzunsoy, Mater. Des. 31(2010) 3896-3900.
[16] Z. Liu, G. Zu, H. Luo, Y. Liu, G. Yao, J. Mater. Sci. Technol. 26(2010) 244-250.
[17] T. Rajmohan, K. Palanikumar, J.P. Davim, J. Mater. Sci. Technol. 28(2012) 761-768.
[18] K. Rajkumar, S. Aravindan, Tribol. Int. 57(2013) 282-296.
[19] B. Chen, Q. Bi, J. Yang, J. Xia, J. Hao, Wear 41 (2008) 1145-1152.
[20] H. Kato, M. Takama, Y. Iwai, K. Washida, Y. Sasaki, Wear 255 (2003) 573-578.
[21] A.M. Kovalchenko, O.I. Fushchich, S. Danyluk, Wear 290-291(2012) 106-123.
[22] Y. Waranabe, Wear 264 (2008) 624-631.
[23] L. Rapoport, M. Lvovsky, I. Lapsker, W. Leshchinsky, Y. Volovik, Y. Feldman, R. Tenne, Wear 249 (2001) 149-156.
[24] L. Rapoport, V. Leshchinsky, M. Lvovsky, O. Nepomnyashchy, Y. Volovik, R. Tenne, Wear 252 (2002) 518-527.
[25] G. Cui, Q. Bi, J. Yang, W. Liu, Tribol. Int. 60(2013) 83-92.
[26] S.S. Feng, H.R. Geng, Z.Q. Guo, Compos. Part B Eng. 43(2012) 933-939.
[27] A. Das, S.P. Harimkar, J. Mater. Sci. Technol. 30(2014) 1059-1070.
[28] H. Kwon, M. Leparoux, A. Kawasaki, J. Mater. Sci. Technol. 30(2014) 736-742.
[29] K. Rajkumar, S. Aravindan, Wear 270 (2011) 613-621.
[30] Y. Liang, Y. Che, X. Liu, Thermodynamic Data Manual of Inorganic, Northeastern University Press, Shenyang, 1993.
[1] Wei Li, Martina Vittorietti, Geurt Jongbloed, Jilt Sietsma. The combined influence of grain size distribution and dislocation density on hardness of interstitial free steel[J]. 材料科学与技术, 2020, 45(0): 35-43.
[2] Kai Wang, Lei Chen, Chenguang Xu, Wen Zhang, Zhanguo Liu, Yujin Wang, Jiahu Ouyang, Xinghong Zhang, Yudong Fu, Yu Zhou. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic[J]. 材料科学与技术, 2020, 39(0): 99-105.
[3] B.W. Dong, S.H. Wang, Z.Z. Dong, J.C. Jie, T.M. Wang, T.J. Li. Novel insight into dry sliding behavior of Cu-Pb-Sn in-situ composite with secondary phase in different morphology[J]. 材料科学与技术, 2020, 40(0): 158-167.
[4] Z.C. Luo, H.P. Wang. Primary dendrite growth kinetics and rapid solidification mechanism of highly undercooled Ti-Al alloys[J]. 材料科学与技术, 2020, 40(0): 47-53.
[5] Wanjun Yu, Yongting Zheng, Yongdong Yu. Precipitation mechanism and microstructural evolution of Al2O3/ZrO2(CeO2) solid solution powders consolidated by spark plasma sintering[J]. 材料科学与技术, 2020, 41(0): 149-158.
[6] Tielong Han, Enzuo Liu, Jiajun Li, Naiqin Zhao, Chunnian He. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study[J]. 材料科学与技术, 2020, 46(0): 21-32.
[7] L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, J.W. Qiao. Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys[J]. 材料科学与技术, 2020, 42(0): 85-96.
[8] Rita Maurya, Abdul Rahim Siddiqui, Prvan Kumar Katiyar, Kantesh Balani. Mechanical, tribological and anti-corrosive properties of polyaniline/graphene coated Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn alloys[J]. 材料科学与技术, 2019, 35(8): 1767-1778.
[9] Shengyu Jiang, Ruihong Wang. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al-Mg-Si-Sc alloys[J]. 材料科学与技术, 2019, 35(7): 1354-1363.
[10] X.X. Zhang, L.H. Wu, H. Andrä, W.M. Gan, M. Hofmann, D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effects of welding speed on the multiscale residual stresses in friction stir welded metal matrix composites[J]. 材料科学与技术, 2019, 35(5): 824-832.
[11] L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, J.W. Qiao. Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy[J]. 材料科学与技术, 2019, 35(5): 917-925.
[12] Gonçalo L. Sorger, J.P. Oliveira, Patrick L. Inácio, Norbert Enzinger, Pedro Vilaça, R.M. Miranda, Telmo G. Santos. Non-destructive microstructural analysis by electrical conductivity: Comparison with hardness measurements in different materials[J]. 材料科学与技术, 2019, 35(3): 360-368.
[13] Richard Jenkins, Shuo Yin, Barry Aldwell, Morten Meyer, Rocco Lupoi. New insights into the in-process densification mechanism of cold spray Al coatings: Low deposition efficiency induced densification[J]. 材料科学与技术, 2019, 35(3): 427-431.
[14] Liu Qing, Wang Guofeng, Sui Xiaochong, Liu Yongkang, Li Xiao, Yang Jianlei. Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering[J]. 材料科学与技术, 2019, 35(11): 2600-2607.
[15] Wen-Wen Li, Bo Chen, La-Mei Cao, Wei Liu, Hua-Ping Xiong, Yao-Yong Cheng. Joining of Cf/SiBCN composite with CuPd-V filler alloy[J]. 材料科学与技术, 2018, 34(9): 1652-1659.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.