J. Mater. Sci. Technol. ›› 2022, Vol. 106: 128-132.DOI: 10.1016/j.jmst.2021.08.015
• Research Article • Previous Articles Next Articles
Fan Yang, Lilin Wang(), Zhijun Wang(
), Qingfeng Wu, Kexuan Zhou, Xin Lin, Weidong Huang
Received:
2021-08-09
Accepted:
2021-08-13
Published:
2022-04-20
Online:
2021-10-02
Contact:
Lilin Wang,Zhijun Wang
About author:
zhjwang@nwpu.edu.cn (Z. Wang).Fan Yang, Lilin Wang, Zhijun Wang, Qingfeng Wu, Kexuan Zhou, Xin Lin, Weidong Huang. Ultra strong and ductile eutectic high entropy alloy fabricated by selective laser melting[J]. J. Mater. Sci. Technol., 2022, 106: 128-132.
Fig. 1. (a) Porosity of EHEA samples fabricated at different process parameters; (b, c, d) optical graphs of EHEA samples to show the defect distributions with VED of 42 J/mm3, 63 J/mm3, 156 J/mm3, respectively.
Fig. 2 SEM microstructures of as-built EHEA with VED of 83 J/mm3 (laser power of 200 W) from cross plane (a1, a2, a3), and longitudinal plane (b1, b2, b3). shows that the lamellar colony is also very small, even along the building direction. We further analyzed the colony distribution with EBSD along the building direction, as shown in Fig. 3. Fig. 3(a) presents the inverse pole figure (IPF) map of FCC phase of the as-built EHEA sample with a VED of 83 J/mm3 (laser power of 200 W). The colonies are composed of equiaxed grains and columnar grains. There are a large number of equiaxed grains at the bottom of the molten pool while a large number of columnar grains in the molten pool, growing along the normal direction of the molten pool boundary. The distribution of lamellar colony size is shown in Fig. 3(b), and most lamellar colonies are in the size range of 2-6 μm.
Fig. 4. (a) Tensile stress-strain curve at room temperature of EHEA samples with different VED and their as-cast counterparts [27,28]; (b) comparison of yield strength with different additive manufacturing processes of HEAs [13⇓⇓⇓⇓-18,37]; (c) tensile stress-strain curve of EHEA samples at different temperatures; (d) the variation of yield strength with temperature.
[1] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
[2] |
D. Gu, X. Shi, R. Poprawe, D.L. Bourell, R. Setchi, J. Zhu, Science 372 (2021) eabg1487.
DOI URL |
[3] |
P. Kurnsteiner, M.B. Wilms, A. Weisheit, B. Gault, E.A. Jagle, D. Raabe, Nature 582 (2020) 515-519.
DOI URL |
[4] |
R. Li, M. Wang, Z. Li, P. Cao, T. Yuan, H. Zhu, Acta Mater 193 (2020) 83-98.
DOI URL |
[5] |
E.R. Denlinger, J. Irwin, P. Michaleris, J. Manuf. Sci. Eng. 136 (2014) 061007.
DOI URL |
[6] |
N.J. Harrison, I. Todd, K. Mumtaz, Acta Mater 94 (2015) 59-68.
DOI URL |
[7] | L. Parry, I.A. Ashcroft, R.D. Wildman, Addit. Manuf. 12 (2016) 1-15. |
[8] |
B. Vrancken, R.K. Ganeriwala, M.J. Matthews, Acta Mater 194 (2020) 464-472.
DOI URL |
[9] |
J. Deng, C. Chen, X. Liu, Y. Li, K. Zhou, S. Guo, Scr. Mater. 203 (2021) 114034.
DOI URL |
[10] |
H. Shipley, D. McDonnell, M. Culleton, R. Coull, R. Lupoi, G. O’Donnell, D. Trimble, Int. J. Mach. Tool. Manuf. 128 (2018) 1-20.
DOI URL |
[11] |
Y.T. Tang, C. Panwisawas, J.N. Ghoussoub, Y. Gong, J.W.G. Clark, A. A. N. Németh, D.G. McCartney, R.C. Reed, Acta Mater 202 (2021) 417-436.
DOI URL |
[12] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[13] |
R. Li, P. Niu, T. Yuan, P. Cao, C. Chen, K. Zhou, J. Alloys Compd. 746 (2018) 125-134.
DOI URL |
[14] |
S. Luo, Y. Su, Z. Wang, Sci. China Mater. 63 (2020) 1279-1290.
DOI URL |
[15] |
P.F. Zhou, D.H. Xiao, Z. Wu, X.Q. Ou, Mater. Sci. Eng. A 739 (2019) 86-89.
DOI URL |
[16] |
Y. Chew, G.J. Bi, Z.G. Zhu, F.L. Ng, F. Weng, S.B. Liu, S.M.L. Nai, B.Y. Lee, Mater. Sci. Eng. A 744 (2019) 137-144.
DOI URL |
[17] |
H. Peng, S. Xie, P. Niu, Z. Zhang, T. Yuan, Z. Ren, X. Wang, Y. Zhao, R. Li, J. Alloys Compd. 862 (2021) 158286.
DOI URL |
[18] |
Q. Shen, X. Kong, X. Chen, Mater. Sci. Eng. A 815 (2021) 141257.
DOI URL |
[19] |
K. Zhou, J. Li, L. Wang, H. Yang, Z. Wang, J. Wang, Intermetallics 114 (2019) 106592.
DOI URL |
[20] | K. Zhou, Z. Wang, F. He, S. Liu, J. Li, J.-J. Kai, J. Wang, Addit. Manuf. 35 (2020) 101410. |
[21] |
H. Li, Y. Huang, J. Sun, Y. Lu, J. Mater. Sci. Technol. 77 (2021) 187-195.
DOI URL |
[22] |
J. Li, S. Xiang, H. Luan, A. Amar, X. Liu, S. Lu, Y. Zeng, G. Le, X. Wang, F. Qu, C. Jiang, G. Yang, J. Mater. Sci. Technol. 35 (2019) 2430-2434.
DOI URL |
[23] |
A. Ostovari Moghaddam, N.A. Shaburova, M.N. Samodurova, A. Abdollahzadeh, E.A. Trofimov, J. Mater. Sci. Technol. 77 (2021) 131-162.
DOI |
[24] |
Q. Shen, X. Kong, X. Chen, J. Mater. Sci. Technol. 74 (2021) 136-142.
DOI URL |
[25] |
Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, T. Li, Sci. Rep. 4 (2014) 6200.
DOI URL |
[26] |
Q. Wu, Z. Wang, X. Hu, T. Zheng, Z. Yang, F. He, J. Li, J. Wang, Acta Mater 182 (2020) 278-286.
DOI URL |
[27] |
Q. Wu, Z. Wang, T. Zheng, D. Chen, Z. Yang, J. Li, J.-J. Kai, J. Wang, Mater. Lett. 253 (2019) 268-271.
DOI URL |
[28] |
Z. Yang, Z. Wang, Q. Wu, T. Zheng, P. Zhao, J. Zhao, J. Chen, Appl. Phys. A 125 (2019) 208.
DOI URL |
[29] |
M.J. Kim, G.C. Kang, S.H. Hong, H.J. Park, S.C. Mun, G. Song, K.B. Kim, J. Mater. Sci. Technol. 57 (2020) 131-137.
DOI URL |
[30] |
T. Xiong, W. Yang, S. Zheng, Z. Liu, Y. Lu, R. Zhang, Y. Zhou, X. Shao, B. Zhang, J. Wang, F. Yin, P.K. Liaw, X. Ma, J. Mater. Sci. Technol. 65 (2021) 216-227.
DOI |
[31] |
I. Basu, J.T.M. De Hosson, Scr. Mater. 187 (2020) 148-156.
DOI URL |
[32] |
I. Basu, V. Ocelík, J.T. De Hosson, Acta Mater 157 (2018) 83-95.
DOI URL |
[33] |
Y. Lu, Y. Dong, H. Jiang, Z. Wang, Z. Cao, S. Guo, T. Wang, T. Li, P.K. Liaw, Scr. Mater. 187 (2020) 202-209.
DOI URL |
[34] |
C.S. Tiwary, P. Pandey, S. Sarkar, R. Das, S. Samal, K. Biswas, K. Chattopadhyay, Prog. Mater. Sci. 123 (2021) 100793.
DOI URL |
[35] |
K. Zhou, J. Li, Q. Wu, Z. Zhang, Z. Wang, J. Wang, Scr. Mater. 201 (2021) 113952.
DOI URL |
[36] |
R.J. Vikram, B.S. Murty, D. Fabijanic, S. Suwas, J. Alloys Compd. 827 (2020) 154034.
DOI URL |
[37] | Y. Zhu, S. Zhou, Z. Xiong, Y.-J. Liang, Y. Xue, L. Wang, Addit. Manuf. 39 (2021) 101901. |
[38] |
C. Zhao, N.D. Parab, X.X. Li, K. Fezzaa, W.D. Tan, A.D. Rollett, T. Sun, Science 370 (2020) 1080-1086.
DOI URL |
[39] |
A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, O.N. Senkov, Mater. Sci. Eng. A 533 (2012) 107-118.
DOI URL |
[40] | X. Li, F. Tian, S. Schonecker, J. Zhao, L. Vitos, Sci.Rep. 5(2015)12334. |
[41] |
O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19 (2011) 698-706.
DOI URL |
[1] | H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens [J]. J. Mater. Sci. Technol., 2022, 97(0): 239-253. |
[2] | Heng Duan, Bin Liu, Ao Fu, Junyang He, Tao Yang, C.T. Liu, Yong Liu. Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 99(0): 207-214. |
[3] | Shengfeng Zhou, Min Xie, Changyi Wu, Yanliang Yi, Dongchu Chen, Lai-Chang Zhang. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms [J]. J. Mater. Sci. Technol., 2022, 104(0): 81-87. |
[4] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[5] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
[6] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
[7] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
[8] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[9] | Yanan Zhao, Zongqing Ma, Liming Yu, Ji Dong, Yongchang Liu. The simultaneous improvements of strength and ductility in additive manufactured Ni-based superalloy via controlling cellular subgrain microstructure [J]. J. Mater. Sci. Technol., 2021, 68(0): 184-190. |
[10] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[11] | Hailin Yang, Yingying Zhang, Jianying Wang, Zhilin Liu, Chunhui Liu, Shouxun Ji. Additive manufacturing of a high strength Al-5Mg2Si-2Mg alloy: Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 91(0): 215-223. |
[12] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
[13] | Liang Deng, Long Zhang, Konrad Kosiba, René Limbach, Lothar Wondraczek, Gang Wang, Dongdong Gu, Uta Kühn, Simon Pauly. CuZr-based bulk metallic glass and glass matrix composites fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 81(0): 139-150. |
[14] | L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 60(0): 139-146. |
[15] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||