J. Mater. Sci. Technol. ›› 2021, Vol. 91: 215-223.DOI: 10.1016/j.jmst.2021.02.048
• Research Article • Previous Articles Next Articles
Hailin Yanga,*(), Yingying Zhanga, Jianying Wanga, Zhilin Liub, Chunhui Liub, Shouxun Jic,*(
)
Received:
2020-11-19
Revised:
2021-01-24
Accepted:
2021-02-05
Published:
2021-11-20
Online:
2021-11-20
Contact:
Hailin Yang,Shouxun Ji
About author:
shouxun.ji@brunel.ac.uk (S. Ji).Hailin Yang, Yingying Zhang, Jianying Wang, Zhilin Liu, Chunhui Liu, Shouxun Ji. Additive manufacturing of a high strength Al-5Mg2Si-2Mg alloy: Microstructure and mechanical properties[J]. J. Mater. Sci. Technol., 2021, 91: 215-223.
Mg | Si | Mg2Si | Mn | Fe | Others | Al |
---|---|---|---|---|---|---|
2.03 | - | 5.05 | 0.42 | 0.11 | <0.08 | Bal. |
Table 1 The composition of experimental Al-5Mg2Si-2Mg alloy powder calibrated by ICP-AES (in wt.%).
Mg | Si | Mg2Si | Mn | Fe | Others | Al |
---|---|---|---|---|---|---|
2.03 | - | 5.05 | 0.42 | 0.11 | <0.08 | Bal. |
Fig. 1. (a) SEM image showing the morphology of Al-5Mg2Si-2Mg alloy powder with Ar gas atomization; (b) Particle size distribution of the atomized powder; (c) and (d) SEM images showing the morphology of atomized article on the cross section and detailed microstructure of Al-5Mg2Si-2Mg alloy.
Fig. 5. EBSD images of as-fabricated Al-5Mg2Si-2Mg alloy along (a) the horizontal direction (in cross plane parallel to base plate), (b) the building direction (in cross plane perpendicular to base plate), and (c) corresponding IPF map.
Fig. 6. SEM images showing (a) the overall microstructure, (b) the detailed microstructure in zone 3, and (c) the detailed microstructure in zone 1 along the horizontal direction; (d) the overall microstructure, (e) the detailed microstructure in zone 3, and (f) the detailed microstructure in zone 1 along the building direction in the SLM fabricated Al-5Mg2Si-2Mg alloy. 1- MP fine zone, 2- HAZ (heat affected zone), 3- MP coarse zone.
Fig. 8. HAADF-STEM image showing the microstructures of intermetallic phase in the as-built Al-5Mg2Si-2Mg alloy and individual elemental mapping of Al, Fe, Mn, Si and Mg.
Fig. 9. (a) Bright field TEM showing the detailed microstructure in the cellar structure and (b) and (c) HRTEM showing the interface of Al/Mg2Si and the inserts showing the orientation of FTT.
Material | Condition | Yield strength (MPa) | UTS (MPa) | Elongation (%) | Refs. |
---|---|---|---|---|---|
Al-5Mg2Si-2Mg | As-SLM fabricated | 295 ± 14 | 452 ± 11 | 9.3 ± 2.5% | This work |
Al7Si0.3Mg | As-SLM fabricated horizontal | 210 | 400 | 11 | [ |
As-SLM fabricated vertical | 200 | 390 | 10 | [ | |
Al7Si0.6Mg | As-SLM fabricated horizontal | 280 | 410 | 7.5 | [ |
As-SLM fabricated vertical | 240 | 400 | 7 | [ | |
Al9Si3Cu | As-SLM fabricated | 219 ± 20 | 374 ± 11 | 1.9 ± 0.2 | [ |
As-SLM fabricated | 236 ± 8 | 415 ± 15 | 5.0 ± 2.0 | [ | |
Al10SiMg | As-SLM fabricated horizontal | 245 | ~330 | 1.2 | [ |
As-SLM fabricated vertical | 220 | 310 | 1 | [ | |
As-SLM fabricated | - | 396 | 3.5 | [ | |
As-SLM fabricated | 360 | 6 | [ | ||
As-SLM fabricated | 268 + 2 | 333 + 15 | 1.4 + 0.3 | [ | |
As-SLM fabricated | 255 ± 13 | 377 ± 13 | 2.2 ± 0.2 | [ | |
As-SLM fabricated horizontal | 182 | 282 | 25 | [ | |
As-SLM fabricated vertical | 184 | 284 | 18 | [ | |
As-SLM fabricated horizontal | 206-241 | 360-390 | 5,6 | [ | |
As-SLM fabricated vertical | 198-208 | 345-357 | 3 | [ | |
Al11SiCuMn | As-SLM fabricated | 350 ± 5 | 470 ± 18 | 1.8 ± 0.4 | [ |
Al12Si | As-SLM fabricated | 225 | 360 | 5 | [ |
As-SLM fabricated | 260 ± 5 | 380 | 3 | [ | |
Al12Si0.75Mg | As-SLM fabricated | 354.9 | 427.7 | 2.54 | [ |
Table 2 Mechanical properties of SLM fabricated Al-Si alloys from different literatures.
Material | Condition | Yield strength (MPa) | UTS (MPa) | Elongation (%) | Refs. |
---|---|---|---|---|---|
Al-5Mg2Si-2Mg | As-SLM fabricated | 295 ± 14 | 452 ± 11 | 9.3 ± 2.5% | This work |
Al7Si0.3Mg | As-SLM fabricated horizontal | 210 | 400 | 11 | [ |
As-SLM fabricated vertical | 200 | 390 | 10 | [ | |
Al7Si0.6Mg | As-SLM fabricated horizontal | 280 | 410 | 7.5 | [ |
As-SLM fabricated vertical | 240 | 400 | 7 | [ | |
Al9Si3Cu | As-SLM fabricated | 219 ± 20 | 374 ± 11 | 1.9 ± 0.2 | [ |
As-SLM fabricated | 236 ± 8 | 415 ± 15 | 5.0 ± 2.0 | [ | |
Al10SiMg | As-SLM fabricated horizontal | 245 | ~330 | 1.2 | [ |
As-SLM fabricated vertical | 220 | 310 | 1 | [ | |
As-SLM fabricated | - | 396 | 3.5 | [ | |
As-SLM fabricated | 360 | 6 | [ | ||
As-SLM fabricated | 268 + 2 | 333 + 15 | 1.4 + 0.3 | [ | |
As-SLM fabricated | 255 ± 13 | 377 ± 13 | 2.2 ± 0.2 | [ | |
As-SLM fabricated horizontal | 182 | 282 | 25 | [ | |
As-SLM fabricated vertical | 184 | 284 | 18 | [ | |
As-SLM fabricated horizontal | 206-241 | 360-390 | 5,6 | [ | |
As-SLM fabricated vertical | 198-208 | 345-357 | 3 | [ | |
Al11SiCuMn | As-SLM fabricated | 350 ± 5 | 470 ± 18 | 1.8 ± 0.4 | [ |
Al12Si | As-SLM fabricated | 225 | 360 | 5 | [ |
As-SLM fabricated | 260 ± 5 | 380 | 3 | [ | |
Al12Si0.75Mg | As-SLM fabricated | 354.9 | 427.7 | 2.54 | [ |
Fig. 11. (a) Equilibrium phase diagram of Al-Mg2Si and Al-Mg2Si-2Mg alloys calculated by Pandat, and (b) the fraction of solid phase evolved during solidification calculated using Scheil-Gulliver non-equilibrium solidification model for Al-5Mg-2Si alloy.
[1] | D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, J. Bültmann, Phys. Proc. 12(2011) 271-278. |
[2] | J. Zhang, B. Song, Q. Wei, D. Bourell, Y. Shi, J. Mater. Sci. Technol. 35(2019) 270-284. |
[3] | E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, Prog. Mater. Sci. 74(2015) 401-477. |
[4] | H. Attar, M. Bönisch, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Acta Mater. 76(2014) 13-22. |
[5] | X. Cai, A.A. Malcolm, B.S. Wong, Z. Fan, Virtual Phys. Prototyp. 10(2015) 195-206. |
[6] | S. Siddique, M. Imran, F. Walther, Int. J. Fatigue 94 (2017) 246-254. |
[7] | H. Zhang, H. Zhu, T. Qi, Z. Hu, X. Zeng, Mater Sci. Eng. A 656 (2016) 47-54. |
[8] | P. Wang, L. Deng, K.G. Prashanth, S. Pauly, J. Eckert, S. Scudino. J. Alloy. Compd. 735(2018) 2263-2266. |
[9] | P. Wang, H.C. Li, K.G. Prashanth, J. Eckert, S. Scudino. J. Alloy. Compd. 707(2017) 287-290. |
[10] | Y. Shi, K. Yang, S.K. Kairy, F. Palm, X. Wu, P.A. Rometsch, Mater. Sci. Eng. A 732 (2018) 41-52. |
[11] | A.B. Spierings, K. Dawson, T. Heeling, P.J. Uggowitzer, R. Schäublin, F. Palme, K. Wegener, Mater. Des. 115(2017) 52-63. |
[12] | W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, Y. Shi, Mater. Sci. Eng. A 663 (2016) 116-125. |
[13] | K.V. Yang, P. Rometsch, C.H.J. Davies, A. Huang, X. Wu , Mater. Des. 154(2018) 275-290. |
[14] | N. Takata, H. Kodaira1, A. Suzuki, M. Kobashi, Mater. Charact. 143(2018) 18-26. |
[15] | F. Yan, S. Ji, Z. Fan, Mater. Sci. Forum 765 (2013) 64-68. |
[16] | S. Ji, D. Watson, Y. Wang, M. White, Z. Fan, Mater. Sci. Forum 765 (2013) 23-27. |
[17] | S. Ji, F. Yan, Z. Fan, Mater. Sci. Eng. A 626 (2015) 165-174. |
[18] | L.N. Carter, X Wang, N Read, Mater. Sci. Technol. 32(2015) 1-5. |
[19] | K.G. Prashanth, S. Scudino, T. Maity, J. Das, J. Eckert, Mater. Res. Lett. 5(2017) 386-390. |
[20] | L.C. Zhang, D. Klemm, J. Eckert, Y.L. Hao, T.B. Sercombe, Scr. Mater. 65(2011) 21-24. |
[21] | Y.J. Liu, Z. Liu, Y. Jiang, G.W. Wang, Y. Yang, L.C. Zhang. J. Alloy. Compd. 735(2018) 1414-1421. |
[22] | J.C. Wang, Y.J. Liu, C.D. Rabadia, S.X. Liang, T.B. Sercombe, L.C. Zhang. J. Mater. Sci. Technol. 61(2021) 221-233. |
[23] | S. Ji, W. Yang, F. Gao, D. Watson, Z. Fan, Mater. Sci. Eng. A 564 (2013) 130-139. |
[24] | T. Kimura, T. Nakamoto, Mater. Des. 89(2016) 1294-1301. |
[25] | J.H. Rao, Y. Zhang, K. Zhang, X. Wu, A. Huang, Mater. Des. 182(2019) 108005. |
[26] | M. Fousova, D. Dvorsky, M. Vronka, D. Vojtech, P. Lejcek, Materials 11(2018) 1918 (Basel). |
[27] | https://www.slm-solutions.com/fileadmin/user_upload/MDS_AL-Alloy_AISICu3_0219.pdf. |
[28] | N. Read, W. Wang, K. Essa, M.M. Attallah, Mater. Des. 65(2015) 417-424. |
[29] | K. Kempen, L. Thijs, J.V. Humbeeck, J.P. Kruth, Mater. Sci. Technol. 31(2015) 917-923. |
[30] | P. Wei, Z. Wei, Z. Chen, J. Du, Y. He, J. Li, Y. Zhou, Appl. Surf. Sci. 408(2017) 38-50. |
[31] | N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, N.M. Everitt, Mater. Sci. Eng. A 667 (2016) 139-146. |
[32] | M. Fousová, D. Dvorsky, A. Michalcová, D. Vojtech, Mater. Charact. 137(2018) 119-126. |
[33] | I. Rosenthal, A. Stern, N. Frage, Mater. Sci. Eng. A 682 (2017) 509-517. |
[34] | L. Hitzler, C. Janousch, J. Schanz, M. Merkel, B. Heine, F. Mack, W. Hall, A. Öch- sner , J.Mater. Process. Technol. 243(2017) 48-61. |
[35] | A.V. Pozdniakov, A.Yu. Churyumov, I.S. Loginova, D.K. Daubarayte, D.K. Ryabov, V.A. Korolev, Mater. Lett. 225(2018) 33-36. |
[36] | X. Li, X. Wang, M. Saunders, A. Suvorova, L. Zhang, Y. Liu, M. Fang, Z. Huang, T.B. Sercombe, Acta Mater. 95(2015) 74-82. |
[37] | K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Löber, Z. Wang, A.K. Chaubey, U. Kühn, J. Eckert, Mater. Sci. Eng. A 590 (2014) 153-160. |
[38] | Y. Bai, Y. Yang, Z. Xiao, M. Zhang, D. Wang, Mater. Des. 140(2018) 257-266. |
[39] | M.A. Easton, M.A. Gibson, S. Zhu, T.B. Abbott, Metall. Mater. Trans. A 45 (2014) 3586-3595. |
[40] | S. Kou, Weld. J. 94(2015) 374-388. |
[41] | S. Kou, Acta Mater. 88(2015) 366-374. |
[42] | F. Liu, X. Zhu, S. Ji. J. Alloy. Compd. 821(2020) 153458. |
[43] | X.P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H.W. Wang, J. Vleugel, J.V. Humbeeck, J.P. Kruth, Acta Mater. 129(2017) 183-193. |
[44] | Q.Y. Tan, J.Q. Zhang, Q. Sun, Z.Q. Fan, G. Li, Y.G. Liu Y.Yin, M.X. Zhang, Acta Mater. 129(2017) 1-16. |
[45] | N. Moelans, B. Blanpain, P. Wollants, Acta Mater. 55(2007) 2173-2182. |
[1] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[2] | Li Sun, Xiaobo Ren, Jianying He, Zhiliang Zhang. Numerical investigation of a novel pattern for reducing residual stress in metal additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 67(0): 11-22. |
[3] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
[4] | Yongsheng Liu, Jiaying Jin, Tianyu Ma, Baixing Peng, Xinhua Wang, Mi Yan. Promoting the La solution in 2:14: 1-type compound: Resultant chemical deviation and microstructural nanoheterogeneity [J]. J. Mater. Sci. Technol., 2021, 62(0): 195-202. |
[5] | Yuan Wu, Fei Zhang, Xiaoyuan Yuan, Hailong Huang, Xiaocan Wen, Yihan Wang, Mengyuan Zhang, Honghui Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, Zhaoping Lu. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 214-220. |
[6] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[7] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[8] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[9] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[10] | Jing Chen, Liang Wu, Xingxing Ding, Qiang Liu, Xu Dai, Jiangfeng Song, Bin Jiang, Andrej Atrens, Fusheng Pan. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2021, 64(0): 10-20. |
[11] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
[12] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
[13] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[14] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
[15] | Xuewei Yan, Qingyan Xu, Guoqiang Tian, Quanwei Liu, Junxing Hou, Baicheng Liu. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67(0): 36-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||