J. Mater. Sci. Technol. ›› 2022, Vol. 97: 239-253.DOI: 10.1016/j.jmst.2021.04.049
• Research Article • Previous Articles Next Articles
H.Y. Wana, W.K. Yanga,b, L.Y. Wanga,b, Z.J. Zhouc, C.P. Lic, G.F. Chenc, L.M. Leid, G.P. Zhanga,*()
Received:
2021-01-20
Revised:
2021-04-27
Accepted:
2021-04-28
Published:
2021-06-29
Online:
2021-06-29
Contact:
G.P. Zhang
About author:
* E-mail address: gpzhang@imr.ac.cn (G.P. Zhang).H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens[J]. J. Mater. Sci. Technol., 2022, 97: 239-253.
Fig. 1. Schematic illustration of (a) the challenges in qualifying the mechanical properties of geometrically complex AM components, i.e., Inconel 718 blade integrated disks manufactured using L-PBF, (b) geometrical dimensions of mechanical test specimens excised from the XZ plane of a large block (dimensions in mm) and the applied scanning strategy.
Laser power (W) | Scanning speed (mm/s) | Stripe width (mm) | Stripe overlap (μm) | Hatch distance (μm) | Layer thickness (μm) | Platform temperature (°C) |
---|---|---|---|---|---|---|
285 | 960 | 10 | 120 | 110 | 40 | 80 |
Table 1 Process parameters of SLM Inconel 718.
Laser power (W) | Scanning speed (mm/s) | Stripe width (mm) | Stripe overlap (μm) | Hatch distance (μm) | Layer thickness (μm) | Platform temperature (°C) |
---|---|---|---|---|---|---|
285 | 960 | 10 | 120 | 110 | 40 | 80 |
Fig. 2. EBSD orientation maps in the (a) XY and (b) XZ planes of SLM Inconel 718 specimen, inset in (b) schematically showing the “microstructure unit”, pole figures in the XY plane of the (c) cylindrical-shaped grains and (d) plate-shaped grains shown in (a).
Fig. 4. (a) TEM bright-field image showing the morphology and orientation of solidification cells and needle-shaped δ phases, the insets showing the SAED patterns of γ phase and δ phase, (b) TEM bright-field image showing the γ′′ phases in HA-treated specimen, the insets showing the orientation relationship between γ and γ′′phases, a sketch showing the dimension of thickness and diameter of γ′′ phases.
Fig. 5. (a) Tensile engineering stress-strain curves of the SLM Inconel 718 specimens with t/d ranging from 8.3 to 0.8 after HA treatment, (b) evolution of the yield strength and ultimate tensile strength with reducing t/d, (c) evolution of the total elongation (εte), uniform elongation (εue) and post-necking elongation (εpe) with reducing t/d.
Fig. 6. (a) Total elongation plotted against L/S1/2 and fitted by Oliver's formula (black dashed line), (b) true stress-true strain curves and the corresponding K-M strain hardening rate curves of SLM Inconel 718 with varying t/d.
Fig. 7. (a) Contour maps of the major strain at the front surface of gage section of t/d ≥ 2.0 specimens at εg = 10% and t/d = 0.8 specimen at εg = 2.6%, the blank areas in the contour maps result from the localized fracture of the white and black dot pattern when subjected to large strain, (b) line profiles of the major strain over εg along the center line of gage section.
Fig. 8. SEM surface tensile damage and fracture morphologies of the t/d = 4.2 specimen in the (a) low and (b) high magnifications, SEM surface tensile damage and fracture morphologies of the t/d = 2.0 specimen in the (c) low and (d) high magnifications, (e) SEM surface tensile damage and fracture morphologies of the t/d = 0.8 specimen.
Fig. 10. SEM micrographs of fatigue fracture surfaces of the t/d = 6.3 specimen at (a) σa = 396 MPa and (b) σa = 279 MPa, the right and left insets in (a) showing the crack initiation site and crack propagation area, respectively, inset in (b) showing the crack initiation site, SEM micrographs of fatigue fracture surfaces of the t/d = 0.8 specimen at (c) σa = 396 MPa and (d) σa = 279 MPa, inset in (c) showing the crack initiation site, (e) crack propagation area of the t/d = 0.8 specimen at σa = 396 MPa.
Fig. 11. (a) Summary of the normalized yield strengths of conventionally-fabricated pure metals (polycrystalline Cu [43] and Ni [40]) and engineering alloys (CA6NM martensite stainless steel [45] and Ti alloy [41]) as well as the SLM Inconel 718 as a function of t/d, (b) schematic illustrations of contributions of the surface and interior grain layers to the yield strength, (c) the predicted yield strength map of polycrystalline Cu as a function of d and t/d.
Fig. 13. (a) EBSD orientation map of the “microstructure unit” showing a large misorientation between the cylindrical- and plate-shaped grains, (b) the corresponding GROD map at εg = 4.85% showing the strain gradient within the “microstructure unit” (indicated by the blue arrows), (c) the corresponding GND density distribution map at εg = 4.85% showing pronounced GNDs adjacent to the “microstructure unit” interface (indicated by the black arrows), (d) line profile of GND density distribution along red line shown in (c).
Fig. 14. (a) EBSD orientation map and the corresponding (b) Taylor factor mapping, (c) KAM mapping of the type II (t/d = 0.8) specimen close to the tensile fracture.
Fig. 15. Summary of the normalized fatigue limits (at 1 × 107 cycles) of SLM Inconel 718 and conventionally-fabricated Ti alloy [41], CA6NM martensite stainless steel [45], Cu [36,[79], [80], [81], [82], [83], [84]] as a function of specimen thickness.
A | B | α | β | |
---|---|---|---|---|
SLM Inconel 718 | 2.9 | 8.3 | 40 | 1.2 |
Ti alloy [ | 26.2 | 5.9 | 21 | 1.2 |
CA6NM martensite stainless steel [ | 21.8 | 4 | 21 | 1.2 |
Cu [ | 5 | 1000 | 5.3 | 1.2 |
Table 2 Fitted parameters for various metallic materials.
A | B | α | β | |
---|---|---|---|---|
SLM Inconel 718 | 2.9 | 8.3 | 40 | 1.2 |
Ti alloy [ | 26.2 | 5.9 | 21 | 1.2 |
CA6NM martensite stainless steel [ | 21.8 | 4 | 21 | 1.2 |
Cu [ | 5 | 1000 | 5.3 | 1.2 |
[1] | J. Manriquez-Frayre, D. Bourell, in: International Solid Freeform Fabrication Symposium, Austin, TX, 1990, pp. 99-106. |
[2] |
W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, Int. Mater. Rev. 61 (5) (2016) 315-360.
DOI URL |
[3] |
M. Seifi, M. Dahar, R. Aman, O. Harrysson, J. Beuth, J.J. Lewandowski, JOM 67 (3) (2015) 597-607.
DOI URL |
[4] |
Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nat. Mater. 17 (1) (2018) 63-71.
DOI URL |
[5] |
Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai, J. Wei, Scr. Mater. 154 (2018) 20-24.
DOI URL |
[6] |
Z.J. Sun, X.P. Tan, S.B. Tor, C.K. Chua, NPG Asia Mater. 10 (2018) 127-136.
DOI URL |
[7] |
L.F. Liu, Q.Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.L. Chiu, J.X. Li, Z. Zhang, Q. Yu, Z.J. Shen, Mater. Today 21 (4) (2018) 354-361.
DOI URL |
[8] |
B. Berman, Bus. Horiz. 55 (2) (2012) 155-162.
DOI URL |
[9] | R.W. Liu, Z.Y. Wang, T. Sparks, F. Liou, J. Newkirk, in: M. Brandt (Ed.), Laser Ad-ditive Manufacturing: Materials, Design, Technologies, and Applications, Wood-head Publishing, New York, 2017, pp. 351-371. |
[10] | S. Singh, S. Ramakrishna, Curr. Opin. Biomed. Eng. 2 (2017) 105-115. |
[11] |
J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549 (2017) 365-369.
DOI URL |
[12] |
M. Seifi, A. Salem, J. Beuth, O. Harrysson, J.J. Lewandowski, JOM 68 (3) (2016) 747-764.
DOI URL |
[13] |
S. Beretta, S. Romano, Int. J. Fatigue 94 (2017) 178-191.
DOI URL |
[14] |
A. Yadollahi, N. Shamsaei, Int. J. Fatigue 98 (2017) 14-31.
DOI URL |
[15] | R. Russell, D. Wells, J. Waller, B. Poorganji, E. Ott, T. Nakagawa, H. Sandoval, N. Shamsaei, M. Seifi, in: F. Froes, R. Boyer (Eds.), Additive Manufacturing for the Aerospace Industry, Matthew Deans, Cambridge, 2019, pp. 33-66. |
[16] |
H.Y. Wan, G.F. Chen, C.P. Li, X.B. Qi, G.P. Zhang, J. Mater. Sci. Technol. 35 (6) (2019) 1137-1146.
DOI |
[17] | B.B. Babamiri, J. Indeck, G. Demeneghi, J. Cuadra, K. Hazeli, Addit. Manuf. 34 (2020) 101380. |
[18] | C. Hammerschmidt, Additive Manufacturing Allows Design of Environment-Friendly Aircraft Engines, 2019 https://www.eenewspower.com/news/additive-manufacturing-allows-design-environment-friendly-aircraft-engines. |
[19] |
A.A. Antonysamy, J. Meyer, P.B. Prangnell, Mater. Charact. 84 (2013) 153-168.
DOI URL |
[20] |
S. Romano, A. Brandao, J. Gumpinger, M. Gschweitl, S. Beretta, Mater. Des. 131 (2017) 32-48.
DOI URL |
[21] |
J. Dzugan, M. Seifi, R. Prochazka, M. Rund, P. Podany, P. Konopik, J. Lewandowski, Mater. Charact. 143 (2018) 94-109.
DOI URL |
[22] |
K. Mertová, J. Džugan, M. Roudnická, M. Daniel, D. Vojtĕch, M. Seifi, J.J. Lewandowski, Metals 10 (10) (2020) 1340.
DOI URL |
[23] | X.L. Zhao, S.J. Li, M. Zhang, Y.D. Liu, T.B. Sercombe, S.G. Wang, Y.L. Hao, R. Yang, L. E. Murr, Mater. Des. 95 (2016) 21-31. |
[24] |
D. Barba, C. Alabort, Y.T. Tang, M.J. Viscasillas, R.C. Reed, E. Alabort, Mater. Des. 186 (2020) 108235.
DOI URL |
[25] | S.M.J. Razavi, B. Van Hooreweder, F. Berto, Addit. Manuf. 36 (2020) 101426. |
[26] |
H.Y. Wan, Y.W. Luo, B. Zhang, Z.M. Song, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, G.P. Zhang, Int. J. Fatigue 137 (2020) 105654.
DOI URL |
[27] |
A. Yadollahi, N. Shamsaei, S.M. Thompson, A. Elwany, L. Bian, Int. J. Fatigue 94 (2017) 218-235.
DOI URL |
[28] |
P. Edwards, M. Ramulu, Mater. Sci. Eng. A. 598 (2014) 327-337.
DOI URL |
[29] |
G. Nicoletto, Int. J. Fatigue 94 (2017) 255-262.
DOI URL |
[30] |
M. Simonelli, Y.Y. Tse, C. Tuck, Mater. Sci. Eng. A. 616 (2014) 1-11.
DOI URL |
[31] | Q. Liu, G. Wang, C. Qiu, Addit. Manuf. 35 (2020) 101329. |
[32] |
S.Amir H. Motaman, F. Roters, C. Haase, Acta Mater. 185 (2020) 340-369.
DOI URL |
[33] |
R. Armstrong, J. Mech. Phys. Solids 9 (3) (1961) 196-199.
DOI URL |
[34] |
A.W. Thompson, Scr. Metall. 8 (2) (1974) 145-147.
DOI URL |
[35] |
C.Y. Dai, G.P. Zhang, C. Yan, Philos. Mag. 91 (6) (2011) 932-945.
DOI URL |
[36] | C.Y. Dai, X.F. Zhu, G.P. Zhang, J. Mater. Sci. Technol. 25 (6) (2009) 721-726. |
[37] |
C. Keller, E. Hug, Mater. Lett. 62 (2008) 1718-1720.
DOI URL |
[38] |
C. Keller, E. Hug, D. Chateigner, Mater. Sci. Eng. A. 500 (2009) 207-215.
DOI URL |
[39] |
C. Keller, E. Hug, R. Retoux, X. Feaugas, Mech. Mater. 42 (1) (2010) 44-54.
DOI URL |
[40] |
C. Keller, E. Hug, X. Feaugas, Int. J. Plasticity. 27 (4) (2011) 635-654.
DOI URL |
[41] |
B. Zhang, Z.M. Song, L.M. Lei, L. Kang, G.P. Zhang, J. Mater. Sci. Technol. 30 (12)(2014) 1284-1288.
DOI |
[42] |
L. Yang, L. Lu, Scr. Mater. 69 (3) (2013) 242-245.
DOI URL |
[43] |
C.Y. Dai, J. Xu, B. Zhang, G.P. Zhang, Phil. Mag. Lett. 93 (9) (2013) 531-540.
DOI URL |
[44] |
C.Y. Dai, B. Zhang, J. Xu, G.P. Zhang, Mater. Sci. Eng. A. 575 (2013) 217-222.
DOI URL |
[45] | Y.F. Ma, Z.M. Song, S.Q. Zhang, L.J. Chen, G.P. Zhang, Acta Metall. Sin. 54 (10)(2018) 1359-1367. |
[46] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117 (2016) 371-392.
DOI URL |
[47] |
H.Y. Wan, Z.J. Zhou, C.P. Li, G.F. Chen, G.P. Zhang, Adv. Eng. Mater. 20 (2018) 1800307.
DOI URL |
[48] |
M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A. 527 (2010) 2738-2746.
DOI URL |
[49] | S.I. Wright, M.M. Nowell, D.P. Field, Microsc. Microanal. 17 (3) (2011) 316-329. |
[50] |
L.N. Carter, C. Martin, P.J. Withers, M.M. Attallah, J. Alloy. Compd. 615 (2014) 338-347.
DOI URL |
[51] |
L.Y. Wang, Y.C. Wang, Z.J. Zhou, H.Y. Wan, C.P. Li, G.F. Chen, G.P. Zhang, Mater. Des. 195 (2020) 109042.
DOI URL |
[52] | J.M. Park, J. Choe, H.K. Park, S. Son, J. Jung, T.S. Kim, J.H. Yu, J.G. Kim, H.S. Kim, Addit. Manuf. 35 (2020) 101333. |
[53] |
T. Ishimoto, K. Hagihara, K. Hisamoto, S.H. Sun, T. Nakano, Scr. Mater. 132 (2017) 34-38.
DOI URL |
[54] |
X. Wang, L. Zhang, Z. Guo, Y. Jiang, X. Tao, L. Liu, J. Mech. Behav. Biomed. Mater. 62 (2016) 310-318.
DOI URL |
[55] | S. Grib, O. Ivasishin, A. Illarionov, M. Karabanalov, KnE Engineering (2019) 74-81. |
[56] |
S.H. Lee, M. Todai, M. Tane, K. Hagihara, H. Nakajima, T. Nakano, J. Mech. Behav. Biomed. Mater. 14 (2012) 48-54.
DOI PMID |
[57] |
J. Goulden, P. Pinard, A. Gholinia, M. Kocun, R. Proksch, Microsc. Microanal. 24 (2018) 594-595.
DOI URL |
[58] |
Y.H. Zhao, Y.Z. Guo, Q. Wei, A. Dangelewicz, C. Xu, Y. Zhu, T. Langdon, Y. Zhou, E. Lavernia, Scr. Mater. 59 (6) (2008) 627-630.
DOI URL |
[59] |
H. Wei, G. Hibbard, G. Palumbo, U. Erb, Scr. Mater. 57 (11) (2007) 996-999.
DOI URL |
[60] |
D. Oliver, Proc. Inst. Mech. Eng. 115 (1) (1928) 827-864.
DOI URL |
[61] |
H.Y. Wan, Z.J. Zhou, C.P. Li, G.F. Chen, G.P. Zhang, Mater. Sci. Eng. A. 753 (2019) 42-48.
DOI URL |
[62] | A. Yadollahi, N. Shamsaei, S.M. Thompson, A. Elwany, L. Bian, M. Mahmoudi, in: Proceedings of 26th International Solid Freeform Fabrication Symposium, Austin, TX, 2015. |
[63] |
M.C. Chaturvedi, Y.F. Han, Metal Sci. 17 (3) (1983) 145-149.
DOI URL |
[64] | J. Oblak, D. Paulonis, D. Duvall, Metall. Trans. 5 (1) (1974) 143. |
[65] |
J. Wu, X. Wang, W. Wang, M. Attallah, M. Loretto, Acta Mater. 117 (2016) 311-320.
DOI URL |
[66] |
Y.T. Chen, A.C. Yeh, M.Y. Li, S.M. Kuo, Mater. Des. 119 (2017) 235-243.
DOI URL |
[67] |
W.J. Yuan, Z.L. Zhang, Y.J. Su, L.J. Qiao, W.Y. Chu, Mater. Sci. Eng. A. 532 (2012) 601-605.
DOI URL |
[68] |
S. Miyazaki, K. Shibata, H. Fujita, Acta Metall. 27 (5) (1979) 855-862.
DOI URL |
[69] |
W.K. Yang, L.Y. Wang, Z.M. Song, X.M. Luo, G.P. Zhang, Steel Res. Int. (2021), doi: 10.1002/srin.202000685.
DOI |
[70] |
H.D. Espinosa, B.C. Prorok, B. Peng, J. Mech. Phys. Solids 52 (3) (2004) 667-689.
DOI URL |
[71] |
C. Keller, E. Hug, A.M. Habraken, L. Duchene, Int. J. Plasticity 29 (2012) 155-172.
DOI URL |
[72] | M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials, Cambridge Uni-versity Press, Cambridge, 2008. |
[73] |
K. Gan, R. Gu, A.H. Ngan, J. Mater. Res. 32 (11) (2017) 2003-2013.
DOI URL |
[74] |
Y.S.J. Yoo, T.A. Book, M.D. Sangid, J. Kacher, Mater. Sci. Eng. A. 724 (2018) 444-451.
DOI URL |
[75] | H. Kitagawa, in: Proceeding of the 2nd International Conference on Mechanical Behavior of Materials, Boston, ASM, Cleveland, Ohio, 1976, pp. 627-631. |
[76] |
H. Kitagawa, S. Takahashi, Trans. Jpn. Soc. Mech. Eng. 45 (1979) 1289-1303.
DOI URL |
[77] |
Y. Murakami, M. Endo, Eng. Fract. Mech. 17 (1) (1983) 1-15.
DOI URL |
[78] |
M. El Haddad, T. Topper, K. Smith, Eng. Fract. Mech. 11 (3) (1979) 573-584.
DOI URL |
[79] | S. Agnew, A.Y. Vinogradov, S. Hashimoto, J. Weertman, J. Electron. Mater. 28 (9) (1999) 1038-1044. |
[80] |
P. Lukáš, L. Kunz, Mater. Sci. Eng. 85 (1987) 67-75.
DOI URL |
[81] |
Q.S. Pan, L. Lu, Acta Mater. 81 (2014) 248-257.
DOI URL |
[82] |
J. Polák, K. Obrtlík, M. Hájek, A. Vašek, Mater. Sci. Eng. A. 151 (1) (1992) 19-27.
DOI URL |
[83] |
C.J. Shute, B.D. Myers, S. Xie, T.W. Barbee, A.M. Hodge, J.R. Weertman, Scr. Mater. 60 (12) (2009) 1073-1077.
DOI URL |
[84] |
A.W. Thompson, W. Backofen, Acta Metall. 19 (7) (1971) 597-606.
DOI URL |
[1] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
[2] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[3] | Decheng Kong, Chaofang Dong, Xiaoqing Ni, Zhang Liang, Xiaogang Li. In-situ observation of asymmetrical deformation around inclusion in a heterogeneous additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 89(0): 133-140. |
[4] | Kyu-Sik Kim, Sangsun Yang, Myeong-Se Kim, Kee-Ahn Lee. Effect of post heat-treatment on the microstructure and high-temperature oxidation behavior of precipitation hardened IN738LC superalloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 76(0): 95-103. |
[5] | Liang Deng, Long Zhang, Konrad Kosiba, René Limbach, Lothar Wondraczek, Gang Wang, Dongdong Gu, Uta Kühn, Simon Pauly. CuZr-based bulk metallic glass and glass matrix composites fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 81(0): 139-150. |
[6] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[7] | Hailin Yang, Yingying Zhang, Jianying Wang, Zhilin Liu, Chunhui Liu, Shouxun Ji. Additive manufacturing of a high strength Al-5Mg2Si-2Mg alloy: Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 91(0): 215-223. |
[8] | Xin Dong, Ning Li, Yanan Zhou, Huabei Peng, Yuntao Qu, Qi Sun, Haojiang Shi, Rui Li, Sheng Xu, Jiazhen Yan. Grain boundary character and stress corrosion cracking behavior of Co-Cr alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 93(0): 244-253. |
[9] | Alireza Nouri, Anahita Rohani Shirvan, Yuncang Li, Cuie Wen. Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion: A review [J]. J. Mater. Sci. Technol., 2021, 94(0): 196-215. |
[10] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[11] | L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 60(0): 139-146. |
[12] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[13] | Yanan Zhao, Zongqing Ma, Liming Yu, Ji Dong, Yongchang Liu. The simultaneous improvements of strength and ductility in additive manufactured Ni-based superalloy via controlling cellular subgrain microstructure [J]. J. Mater. Sci. Technol., 2021, 68(0): 184-190. |
[14] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
[15] | Piao Gao, Wenpu Huang, Huihui Yang, Guanyi Jing, Qi Liu, Guoqing Wang, Zemin Wang, Xiaoyan Zeng. Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5Y alloy produced by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 39(0): 144-154. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||